引言
特征提取是机器学习中的一个关键步骤,它涉及从原始数据中识别和提取有助于后续处理或分析的信息,主要包括一些时域特征和频域特征。
时域特征是指直接从时间序列数据中提取的特征,它们描述了信号在时间上的特性。这些特征对于分析和理解信号的动态行为非常重要,尤其在信号处理、音频分析、生物医学信号处理等领域中应用广泛。常见的有最大值、峭度等。
频域特征是从信号的频率成分中提取的特征,它们描述了信号在不同频率上的分布情况。
本期在常规特征基础上,结合相关文献,分享几个有特点的时域特征和频域特征,如下图所示(如有其他的特色特征,可后台私信我们持续补充哦)。时域特征包括统计、波形、熵、分数维等一些特别的特征。频域暂时考虑了谱峭度的一些特征。
将上述56种特征进行了集成,代码中给出了对应的参考文献,请阅读相关文献,本期不在赘述。
56种特征集成在Get_features.m函数中,只需要调用即可,非常方便。考虑不同的科研任务对特征提取的需求和方法会有所不同,我们提供了特征选择的功能,可一行代码完成特征提取。比如,需要提取“最小值、均值、能量熵、Higuchi分数维”作为特征,只需要写入代码中这些特征的缩写即可,一键提取。即:
Features=Get_features(data,{'min','mean','EnergyEn','HiguchiFD'});
提取的特征保存在变量Features中,位置顺序也是与输入的排序保持一一对应。需要多少个特征,就写入多少个。需要全部特征,那就将全部特征缩写写进去。代码同时方便支持自定义特征。非常好用!
参考文献
Bearing early fault detection and degradation tracking based on support tensor data description with feature tensor,January 2022
- Applied Acoustics 188(9):108530
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
👇👇👇
提取的时域、频域特征太过常规!试试这些吧!-附matlab代码
点击链接跳转:
375种群优化算法免费下载-matlab
https://mp.weixin.qq.com/s/AsFTBmaZ8UOgES9TQuL0Kg?token=1339859150&lang=zh_CN
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!