给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
第一次的代码:
暴力递归,计算所有可能然后求min
a=[]
def mm(i,p,m):#层数i,当前层位置p,求和m
if i==len(triangle):
a.append(m)
return
mm(i+1,p,m+triangle[i][p])
mm(i+1,p+1,m+triangle[i][p+1])
if not triangle:return 0
mm(1,0,triangle[0][0])
return min(a)
超时。。。
采用修改原三角形的数组方法:
从倒数第二排开始迭代,即从倒数第二排开始计算每一个值的最小和,这样一直迭代到[0][0]时,就是[0][0]路径的最小值了。
为什么从倒数第二排开始迭代?因为倒数第二排下面就是最后一排,所以可以直接计算最小值,也可以从最后一排开始,但是没必要,最后一排每个值的路径最小值就是本身。
lp=len(triangle)-2
while lp>=0:
for i in range(len(triangle[lp])):
triangle[lp][i]=triangle[lp][i]+min(triangle[lp+1][i],triangle[lp+1][i+1])
lp-=1
return triangle[0][0]
40ms,排名100%
动态规划:
设置三角形动态规划表,[0][0]为三角形顶点值,然后计算dp[i][j]为该位置的最小值,最后一排表示从顶点到最后一排每一个值的最小值,返回最小的一个即可
if not triangle:return 0
dp=[[0]*i for i in range(1,len(triangle)+1)]
dp[0][0]=triangle[0][0]
for i in range(1,len(triangle)):
for j in range(i+1):
if j==0:#只能是上一排的第一个
dp[i][j]=triangle[i][j]+dp[i-1][j]
elif i==j:#只能是上一排的最后一个
dp[i][j]=triangle[i][j]+dp[i-1][j-1]
else:#可以有两个下来
dp[i][j]=triangle[i][j]+min(dp[i-1][j-1],dp[i-1][j])
return min(dp[-1])
52ms,排名94%