Latex

本文介绍了LaTeX中的一些排版技巧,如快捷键、换行控制、矩阵表达式以及如何创建三线表。特别关注了在CUBFine-graineddataset上的深度学习模型比较,展示了LPE方法的改进版本在5-way样本下的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加粗:快捷键 ctrl+B 
\textbf{}
\noindent 换行段落不缩进两个字符!
%是LATEX中的注释符
~是LATEX用于生成空格的空格符
\空格
\\换行 种方式不仅会换行,同时也会自动进行缩进
如果不想进行缩进,需要在双反斜杠后加入“\noindent”。
\iffalse多行注释\fi

^{q}\in R ^{m\times 1\times 1} $:
\begin{equation}
\begin{split}
\omega ^{s} =W^{T} \left ( GAP\left ( X_{R}^{s} \right ) \right )\
\omega ^{q} =W^{T} \left ( GAP\left ( X_{R}^{q} \right ) \right )
\label{eq:important}
\end{split}
\end{equation}

垂直空白指令:\smallskip。\smallskip 所产生之间距最小, \medskip 所产生之间距为 \smallskip 的两倍,\bigskip 所产生之间距又为 \medskip 的两倍。

水平空白指令:\quad或者\qquad。正文若使用10pt 字体, 则 \quad 产生10pt (约3.5公分) 水平空白; \qquad 则产生两倍之距离。
下标$x_{base}$
上标$x^{novel}$

符号大全

三线表
\usepackage{booktabs,multirow}
\begin{table}[!ht]
    \centering
    \begin{tabular}{ccc}
    \hline
        \multirow{2}{*}{Models} & \multicolumn{2}{c}{CUB}  \\ 
        ~ & 5-Way 1-Shot  & 5-Way 5-Shot  \\ \hline
        DeepEMD(CVPR’20) & 75.65±0.83   & 88.69±0.50  \\ 
        IEPT+ZN (ICCV’21)  & 73.54±0.48  & 87.82±0.30  \\ 
        SEGA*(WACV’22) & 84.57±0.22  & 90.85±0.16  \\ 
        LPE (WACV’23) & 80.76±0.40  & 88.98±0.26  \\ 
        LPE* (WACV’23) & 85.04±0.34 & 89.24+0.26  \\  \hline
        Ours* & ~ &   \\\hline
        Ours & 85.37+0.25 & 89.97+0.19 \\ \hline
    \end{tabular}
    \caption{Results on Fine-grained data set CUB. $\ast $ representative method uses additional semantic knowledge on CUB that is the attribute semantics inherent to the data set.}\label{cub}
\end{table}

效果:
在这里插入图片描述

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值