最长公共子序列 最长上升子序列 问题

SDUT
最长公共子序列问题
给定两个序列 X={x1,x2,…,xm} 和 Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
Input
输入数据有多组,每组有两行 ,每行为一个长度不超过500的字符串(输入全是大写英文字母(A,Z)),表示序列X和Y。
Output
每组输出一行,表示所求得的最长公共子序列的长度,若不存在公共子序列,则输出0。
Sample Input
ABCBDAB
BDCABA

Sample Output
4

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int max(int a,int b)
{
    if(a>b)return a;
    else return b;
}
int main()
{
    int i,j,len1,len2,dp[505][505];
    char s1[1005],s2[1005];
    while(scanf("%s",s1)!=EOF)
    {
        scanf("%s",s2);
        memset(dp,0,sizeof(dp));
        len1=strlen(s1);
        len2=strlen(s2);
        for(i=0;i<=len1;i++)
            dp[i][0]=0;
        for(i=0;i<=len2;i++)
            dp[0][i]=0;
        for(i=1;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            {
                if(s1[i-1]==s2[j-1])
                {
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else
                {
                    dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        printf("%d\n",dp[len1][len2]);



    }
    return 0;
}

最长上升子序列
Problem Description
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1<= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
Input
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
Output
最长上升子序列的长度。
Sample Input
7
1 7 3 5 9 4 8

Sample Output
4

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    int i,j,n,m,max,dp[1001],a[1001];
    scanf("%d",&n);
    for(i=1; i<=n; i++)
    {
        scanf("%d",&a[i]);
    }
    dp[1]=1;
    for(i=2; i<=n; i++)
    {
        m=0;
        for(j=1; j<i; j++)
        {

            if(a[j]<a[i])
            {
                if(dp[j]>m)
                    m=dp[j];
            }
        }
        dp[i]=m+1;
    }
    max=-1;
    for(i=1; i<=n; i++)
    {
        if(dp[i]>max)max=dp[i];
    }
    printf("%d\n",max);


    return 0;
}

上升子序列
一个只包含非负整数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列{a1, a2, …,aN},我们可以得到一些上升的子序列{ai1, ai2, …, aiK},这里1 ≤ i1 < i2 <…< iK ≤ N。例如:对于序列{1, 7, 3, 5, 9, 4, 8},有它的一些上升子序列,如{1, 7}, {3, 4, 8}等等。这些子序列中序列和最大的是子序列{1, 3, 5, 9},它的所有元素的和为18。
对于给定的一个序列,求出它的最大的上升子序列的和。
注意:最长的上升子序列的和不一定是最大的哦。
Input
输入包含多组测试数据,对于每组测试数据:
输入数据的第一行为序列的长度 n(1 ≤ n ≤ 1000),
第二行为n个非负整数 b1,b2,…,bn(0 ≤ bi ≤ 1000)。
Output
对于每组测试数据,输出其最大上升子序列的和。
Sample Input
7
1 7 3 5 9 4 8

Sample Output
8

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    int i,j,n,m,max,dp[1001],a[1001];
    while(scanf("%d",&n)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        memset(a,0,sizeof(a));

        for(i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
        }
        dp[1]=a[1];
        for(i=2; i<=n; i++)
        {
            m=0;
            for(j=1; j<i; j++)
            {

                if(a[j]<a[i])
                {
                    if(dp[j]>m)
                        m=dp[j];
                }
            }
            dp[i]=m+a[i];
        }
        max=-1;
        for(i=1; i<=n; i++)
        {
            if(dp[i]>max)max=dp[i];
        }
        printf("%d\n",max);

    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值