【Day24】回溯算法part1——理论基础与组合

昨天结束了二叉树的章节,今天开始回溯算法部分,听说Carl哥的回溯部分讲的是非常好的,跟着卡哥开冲!!!

今日任务:

  • 回溯算法的理论基础
  • 77.组合

题目一:回溯算法的理论基础

参考:【代码随想录之回溯算法理论基础】

1.1 什么是回溯法:

回溯法也可叫做回溯搜索法,它是一种搜索方式。回溯是递归的副产品,只要有递归就会有回溯,回溯函数也就是递归函数,指的都是一个函数

1.2 回溯法的效率

回溯的效率并不是很高,因为其本质就是穷举,穷举出所有可能,然后选出想要的答案。

1.3 回溯法解决的问题:

在这里插入图片描述

1.4 如何理解回溯法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是 所有回溯法的问题都可以抽象为树形结构
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。

1.5 回溯法模板

在这里插入图片描述

回溯法的模板(非常重要):

void backtracking( 多参数 ){
	if(终止条件){
		收集结果;
		return ;
	}
	// 单层搜索的逻辑
	for(集合的元素集){
		处理节点;
		递归函数;
		回溯操作;
	}
	return;
}

题目二:组合问题

Leetcode题目:【77.组合】
参考:【代码随想录回溯——组合】

在这里插入图片描述
递归三部曲:
(1)递归函数的参数和返回值;
(2)确定终止条件;
(3)单层递归逻辑;

回溯法的模板(非常重要):

void backtracking( 多参数 ){
	if(终止条件){
		收集结果;
		return ;
	}
	// 单层搜索的逻辑
	for(集合的元素集){
		处理节点;
		递归函数;
		回溯操作;
	}
	return;
}

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
自己录制了视频手推此过程,此处分享一下
视频链接:【Leetcode刷题77.组合,手推回溯过程】

class Solution {
public:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(int n, int k, int startIndex){
        if(path.size() == k){
            result.push_back(path);
            return;
        }
        for(int i = startIndex; i <= n; i++){
            path.push_back(i);
            backtracking(n, k, i+1);
            path.pop_back();
        }
    }

    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值