昨天结束了二叉树的章节,今天开始回溯算法部分,听说Carl哥的回溯部分讲的是非常好的,跟着卡哥开冲!!!
今日任务:
- 回溯算法的理论基础
- 77.组合
题目一:回溯算法的理论基础
1.1 什么是回溯法:
回溯法也可叫做回溯搜索法,它是一种搜索方式。回溯是递归的副产品,只要有递归就会有回溯,回溯函数也就是递归函数,指的都是一个函数。
1.2 回溯法的效率
回溯的效率并不是很高,因为其本质就是穷举,穷举出所有可能,然后选出想要的答案。
1.3 回溯法解决的问题:
1.4 如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,是的,我指的是 所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。
1.5 回溯法模板
回溯法的模板(非常重要):
void backtracking( 多参数 ){
if(终止条件){
收集结果;
return ;
}
// 单层搜索的逻辑
for(集合的元素集){
处理节点;
递归函数;
回溯操作;
}
return;
}
题目二:组合问题
Leetcode题目:【77.组合】
参考:【代码随想录回溯——组合】
递归三部曲:
(1)递归函数的参数和返回值;
(2)确定终止条件;
(3)单层递归逻辑;
回溯法的模板(非常重要):
void backtracking( 多参数 ){
if(终止条件){
收集结果;
return ;
}
// 单层搜索的逻辑
for(集合的元素集){
处理节点;
递归函数;
回溯操作;
}
return;
}
自己录制了视频手推此过程,此处分享一下
视频链接:【Leetcode刷题77.组合,手推回溯过程】
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
void backtracking(int n, int k, int startIndex){
if(path.size() == k){
result.push_back(path);
return;
}
for(int i = startIndex; i <= n; i++){
path.push_back(i);
backtracking(n, k, i+1);
path.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};