POJ 1995 (快速幂)

题目链接:http://poj.org/problem?id=1995

就是求(A1^ B1+A2^ B2+ … +AH^ BH)mod M

快速幂详解:https://blog.csdn.net/weixin_44049850/article/details/85222998

运用了取模的运算法则:
(a*b) % p = (a % p * b % p) % p

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <map>
#define INF 0x3f3f3f3f

using namespace std;
typedef long long ll;
const int maxn=50005;

ll M,H;

ll fast_power(ll x, ll y)
{
    ll base=x,ans=1;
    while(y)
    {
        if(y&1)
        {
            ans=ans%M*base%M%M;
        }
        base=base%M*base%M%M;
        y>>=1;
    }
    return ans;
}



int main()
{
    int Z;
    scanf("%d",&Z);
    while(Z--)
    {
        scanf("%lld%lld",&M,&H);
        ll sum=0;
        while(H--)
        {
            ll n1,n2;
            scanf("%lld%lld",&n1,&n2);
            sum=(sum+fast_power(n1,n2))%M;
        }
        printf("%lld\n",sum);
    }

    return 0;
}

在Java中,你可以使用动态规划的方法解决POJ 3233矩阵幂序列的问题,这是一个关于快速幂运算的实际应用。这个问题通常涉及到计算给定矩阵的幂,直到达到某个特定的幂次。下面是一个简单的实现示例: ```java import java.util.Scanner; public class MatrixPower { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); // 矩阵的大小 int m = scanner.nextInt(); // 目标幂次 int[][] matrix = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { matrix[i][j] = scanner.nextInt(); } } int[][] result = matrixPow(matrix, m); // 计算矩阵的m次方 // 打印结果矩阵 for (int[] row : result) { for (int num : row) { System.out.print(num + " "); } System.out.println(); } } private static int[][] matrixPow(int[][] matrix, int power) { if (power == 1) { return matrix; } else if (power % 2 == 0) { // 如果是偶数,先平方再除半 int[][] square = matrixPow(matrix, power / 2); return multiplyMatrices(square, square); } else { // 如果是奇数,先平方然后乘以原矩阵 int[][] square = matrixPow(matrix, power / 2); return multiplyMatrices(multiplyMatrices(square, square), matrix); } } // 用于矩阵相乘 private static int[][] multiplyMatrices(int[][] a, int[][] b) { int[][] result = new int[a.length][b[0].length]; for (int i = 0; i < a.length; i++) { for (int j = 0; j < b[0].length; j++) { for (int k = 0; k < a[0].length; k++) { result[i][j] += a[i][k] * b[k][j]; } } } return result; } } ``` 实现逻辑解释: 1. `matrixPow`函数采用分治策略,通过递归地将幂次数分为一半一半,直至最后变成基础情况(即1次幂),然后逐步构建出最终结果。 2. 当幂是偶数时,我们先计算矩阵的一半的幂,然后通过矩阵乘法得到原始矩阵的平方,再除以2。 3. 当幂是奇数时,同样先计算矩阵的一半的幂,然后将这个平方矩阵自乘一次,最后乘以原始矩阵。 4. `multiplyMatrices`函数实现了两个矩阵的乘法操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值