欧拉函数_欧拉定理_扩展欧拉定理

欧拉函数

  • 定义:对于正整数n,欧拉函数是小于n的正整数中与n互质的数的数目

  • 通式: 【其中:p1,p2,...,pn为x的所有质因数,x是不为0的整数】

  • 特别说明:φ(1)=1:和1互质的数(<=1)就是1本身

  • 性质:

  1. 若n为质数,φ(n)=n-1
  2. 若m,n互质,φ(mn)=φ(m)φ(n)
  3. 当n为奇质数时,φ(2n)=φ(n)
  4. 当n=p^k,且p是质数时,

                 证明:[1,n-1]即[1,p^k-1]区间有整数p^k-1个

                            与p^k不互质的数有{p,2p,3p,4p,...,p^k-p(=(p^(k-1)-1)*p}明显有p^(k-1)-1个

                            于是前者-后者得到:    

                                                也就是:

//欧拉函数模板

bool Is_Prime(ll x)
{
    if( x == 2 ) return true;
    for(ll i = 2 ; i * i <= x ; i++)
    {
        if( x % i == 0)
            return false;
    }
    return true;
}

set<ll> st;

void prime_factor(ll x)
{
    for(ll i = 2 ; i <= x ; i++)
    {
        if(Is_Prime(x))
        {
            st.insert(x) ;
            return ;
        }
        if(Is_Prime(i))
        {
            while(x % i == 0)
            {
                x /= i;
                st.insert(i);
            }
        }
    }
}

ll Euler(ll x)
{
    if(x == 1) return 1;
    ll up = x, down = 1;
    prime_factor(x);
    while(! st.empty())
    {
        int tmp = *st.begin();
        st.erase(st.begin());
        up *= (tmp - 1);
        down *= tmp;
    }
    return up / down;
}

 

欧拉定理

同余定理:

  • 两个整数a,b,若它们除以整数m所得的余数相等,则称a与b对模m同余或a同余于b模m,记作:a≡b(mod m)
  • 给定一个整数m,如果两个整数a,b满足(a-b)%b=0,那么a与b对模m同余,记作a-b≡0(mod m),也即m|(a-b)

内容:

  •   其中a和m互质

     证明:

       假设小于m且与m互质的数为{x[1],x[2],x[3],...,x[φ(m)]},令p[ i ]=a*x[ i ],得到{p[1]=a*x[1], p[2]=a*x[2], ... ,p[φ(m)]=a*x[φ(m)]}

引理1:

  • p[ ]之间两两对于模m不同余;x[ ]之间两两对于模m不同余 

    证明:

    假设p[ i ]和p[ j ]对于模m同余(p[ i ]>p[ j ],i != j),即p[ i ]-p[ j ] Ξ 0 (mod m)

    那么m|p[ i ]-p[ j ]  ->  m|a(x[ i ]-x[ j ])

    设a(x[ i ]-x[ j ])=km  (k是整数)

    因为a和m互质,所以由上式的恒等性可以得到:x[ i ]-x[ j ]和m不互质,且x[ i ]-x[ j ]是m的倍数,即x[ i ]-x[ j ] Ξ 0 (mod m),也就是x[ i ]与x[ j ]对模m同余

     又因为x[ i ]和x[ j ]都与m互质,且都小于m,所以与上述结论矛盾

     得证。

引理2:

  • 每个p[ ]模m的结果都与m互质

    证明:

    假设p[ i ]=ax[ i ]=km+r, gcd(r,m)>1【也就是r和m有公因子,我们设为d,也即d|r,d|m】

    原式可以化为:ax[ i ]=d*(km/d+r/d),即 d|ax[ i ]

    因为a和m互质,x[ i ]和m互质,所以ax[ i ]和m互质,与上述结论矛盾

    得证

 

由上面两个引理我们可以得到:

       p[ ]%m的集合和x[ ]的集合相等,即p[ ]重新排序后与x[ ]对应,两两对模m同余。

       我们将p[ ]相乘 : = * 

       因为p[ i ] Ξ x[ i ] (mod m)

       所以 Ξ  (mod m)  【由引理1和欧拉函数的性质2】

       也即 *  Ξ  (mod m)

       即 Ξ 1 (mod m)

      至此,欧拉定理得证

费马小定理

  • p为质数,整数a不是p的倍数,则a^(p-1)Ξ1(mod p)



扩展欧拉定理

  •  

 

 

 

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值