习题1.8 二分查找 (20 分) 数据结构练习

本题要求实现二分查找算法。

函数接口定义:

Position BinarySearch( List L, ElementType X );

其中List结构定义如下:

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素的位置 */
};

L是用户传入的一个线性表,其中ElementType元素可以通过>、==、<进行比较,并且题目保证传入的数据是递增有序的。函数BinarySearch要查找XData中的位置,即数组下标(注意:元素从下标1开始存储)。找到则返回下标,否则返回一个特殊的失败标记NotFound

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

#define MAXSIZE 10
#define NotFound 0
typedef int ElementType;

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素的位置 */
};

List ReadInput(); /* 裁判实现,细节不表。元素从下标1开始存储 */
Position BinarySearch( List L, ElementType X );

int main()
{
    List L;
    ElementType X;
    Position P;

    L = ReadInput();
    scanf("%d", &X);
    P = BinarySearch( L, X );
    printf("%d\n", P);

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例1:

5
12 31 55 89 101
31

输出样例1:

2

输入样例2:

3
26 78 233
31

输出样例2:

0

Position BinarySearch( List L, ElementType X )

{

int min = 1, max = L->Last;

while(min <= max)

{

int mid = (min + max) / 2;

if(mid > X)

{

max = mid - 1;

mid = (min + max) / 2;

}

else if( mid < X)

{

min = mid + 1;

mid = (min + max) / 2;

}

else

{

return mid

}

}

return NotFound;

}

 

 

二分查找主要是对线性表的初步了解,然后其中需要把min和max这两个参数在while里面的变化规律搞清楚,然后找到极端情况的出口,如没有找到的情况,因为查找无非两种情况,找到和找不到,这里把找不到转化为min和max的关系是关键。

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.

时间复杂度无非就是while循环的次数!

总共有n个元素,

渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数

由于你n/2^k取整后>=1

即令n/2^k=1

可得k=log2n,(是以2为底,n的对数)

所以时间复杂度可以表示O(h)=O(log2n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值