本题要求实现二分查找算法。
函数接口定义:
Position BinarySearch( List L, ElementType X );
其中List
结构定义如下:
typedef int Position;
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
Position Last; /* 保存线性表中最后一个元素的位置 */
};
L
是用户传入的一个线性表,其中ElementType
元素可以通过>、==、<进行比较,并且题目保证传入的数据是递增有序的。函数BinarySearch
要查找X
在Data
中的位置,即数组下标(注意:元素从下标1开始存储)。找到则返回下标,否则返回一个特殊的失败标记NotFound
。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
#define MAXSIZE 10
#define NotFound 0
typedef int ElementType;
typedef int Position;
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
Position Last; /* 保存线性表中最后一个元素的位置 */
};
List ReadInput(); /* 裁判实现,细节不表。元素从下标1开始存储 */
Position BinarySearch( List L, ElementType X );
int main()
{
List L;
ElementType X;
Position P;
L = ReadInput();
scanf("%d", &X);
P = BinarySearch( L, X );
printf("%d\n", P);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例1:
5
12 31 55 89 101
31
输出样例1:
2
输入样例2:
3
26 78 233
31
输出样例2:
0
Position BinarySearch( List L, ElementType X )
{
int min = 1, max = L->Last;
while(min <= max)
{
int mid = (min + max) / 2;
if(mid > X)
{
max = mid - 1;
mid = (min + max) / 2;
}
else if( mid < X)
{
min = mid + 1;
mid = (min + max) / 2;
}
else
{
return mid
}
}
return NotFound;
}
二分查找主要是对线性表的初步了解,然后其中需要把min和max这两个参数在while里面的变化规律搞清楚,然后找到极端情况的出口,如没有找到的情况,因为查找无非两种情况,找到和找不到,这里把找不到转化为min和max的关系是关键。
二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
时间复杂度无非就是while循环的次数!
总共有n个元素,
渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数
由于你n/2^k取整后>=1
即令n/2^k=1
可得k=log2n,(是以2为底,n的对数)
所以时间复杂度可以表示O(h)=O(log2n)