数字图像处理 第十二章 目标识别

在这里插入图片描述

引言 P557

  • 识别 是基于目标的 描述 给该目标赋予 标志 的过程
  • 本章介绍的模式识别方法主要分为两个领域:
    ① 决策理论方法:处理的是使用 定量描绘子 来描述的各种模式,如长度、面积和纹理等
    ② 结构方法:处理的是由 定性描绘子 来描述的各种模式
  • 识别的核心问题是 通过样本模式进行 “学习” 这一概念

一、模式和模式类 P557 - P560

  • 模式 是描绘子的组合。在有关模式识别文献中经常使用 特征来表示描绘子

  • 模式类 是具有共同属性的一族模式。模式类用 ω 1 , ω 2 , . . . , ω W \omega_1,\omega_2,...,\omega_W ω1,ω2,...,ωW 表示,其中 W是模式类数

  • 由机器完成的 a) 模式识别涉及自动化地 且 b) 人为干预尽可能少地 将不同模式赋予不同类别的技术

  • 模式与模式类概念自总结
    ① 模式 类似于 编程中 对象 的概念
    ② 模式类 类似于 编程中 的概念

  • 实践中常用的三种模式组合是:a) 向量(用于定量描述)、b) 串(用于结构描述)、c) 树(用于结构描述)

  • 模式向量
    模式向量 由粗体小写字母表示,如 x , y 和 z x,y和z x,yz,并采用下列形式
    x = [ x 1 x 2 ⋮ x n ] x = \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{bmatrix} x= x1x2xn

    x = [ x 1 x 2 ⋯ x n ] T x = \begin{bmatrix} x_1&x_2&\cdots&x_n \end{bmatrix}^T x=[x1x2xn]T
    式中,每个分量 x i x_i xi 表示 第 i 个描绘子,n 是与该模式有关的描绘子的 总数
    ② 模式向量x中的各个分量(描述子)的性质,取决于 用于描述该物理模式本身的方法
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


  • 在这里插入图片描述

在这里插入图片描述


  • 在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 模式向量、串和树概念自总结
    ① 模式向量中的各分量(描述子)性质,取决于 描述物理模式本身的方法。模式向量由 定量信息(描述子)表征
    ② 对于指纹识别等问题,使用结构方法通常能得到解决,因为这种问题不仅 a) 定量度量每个特性,而且 b)这些特性间的空间关系决定了(模式)类别的成员
    ③ 串描述适合于生成其结构是基于 基元 的简单链接,并且通常是和 边界形状有关系的目标模式和其他实体模式
    ④ 对于多层排序方案都会导致树结构

二、基于决策理论方法的识别 P560 - P585

  • 决策理论方法 处理的是 使用定量描绘子来描述的各种模式(模式向量)

  • 决策理论方法识别以使用 决策(或判别)函数 为基础

  • 在决策理论方法识别的探讨中
    ① 令 x = ( x 1 , x 2 , . . . , x n ) T x = (x_1,x_2,...,x_n)^T x=(x1,x2,...,xn)T 表示 n 维模式向量
    ② 对于 W 个模式类 ω 1 , ω 2 , . . . , ω W \omega_1,\omega_2,...,\omega_W ω1,ω2,...,ωW ,决策理论模式识别的基本问题是依据如下属性 找到 W 个决策函数 d 1 ( ) , d 2 ( ) , . . . , d W ( ) d_1(),d_2(),...,d_W() d1()d2()...,dW()
    a) 如果模式 x x x 属于类 ω i \omega_i ωi,则
    d i ( x ) = > d j ( x ) , j = 1 , 2 , . . . , W ; j ≠ i d_i(x) = > d_j(x) ,j = 1,2,...,W;j \neq i di(x)=>dj(x)j=1,2,...,Wj=i
    b) 换句话解释 a)中式子。即:将 x x x 代入所有决策函数后,如果 d i ( x ) d_i(x) di(x) 得到最大值,则称 未知模式x 属于 第 i 个模式类 。该关系可以任意求解
    ③ 将 类 ω i \omega_i ωi 从 类 ω j \omega_j ωj 中分离出来的 决策边界,由满足 d i ( x ) = d j ( x ) d_i(x) = d_j(x) di(x)=dj(x) x x x 值给出,或等价地由
    d i ( x ) − d j ( x ) = 0 d_i(x) - d_j(x) = 0 di(x)dj(x)=0
    x x x 值给出
    a) 通常的做法,使用单一函数 d i j = d i ( x ) − d j ( y ) = 0 d_{ij} = d_i(x) - d_j(y) = 0 dij=di(x)dj(y)=0 来识别两个类之间的 决策边界。因此模式类 ω i \omega_i ωi d i j ( x ) > 0 d_{ij}(x) > 0 dij(x)>0,而对于模式类 ω j \omega_j ωj d i j ( x ) < 0 d_{ij}(x) < 0 dij(x)<0

  • 决策函数理论自总结
    ① 每个模式类 x x x 对应一个 决策函数 d i ( x ) d_i(x) di(x),决策函数的返回值大小反映了:某一模式 x x x 属于 模式类 ω i \omega_i ωi的程度,决策函数的返回值 越大从属程度越高,其中最大返回值决定 模式从属于哪个模式类

2.1 匹配 P560 - P564

  • 基于 匹配的识别技术通过一个原型模式向量来表示每个类。根据一种预先定义的测度,将一个未知模式赋予最近的类
    ① 最简单的方法是 最小距离分类器,如其名称所示,最小距离分类器计算该未知模式与每个原型向量间的(欧氏)距离。它选择最小距离来决策
    ② 还有一种基于 相关 的方法,该方法可根据图像用公式来直接表达

  • 最小距离分类器
    ① 假设我们把每个 模式类的原型 定义为 该类模式的平均向量:
    m j = 1 N j ∑ x ∈ ω j x j , j = 1 , 2 , . . . , W m_j = \frac{1}{N_j}\sum_{x \in \omega_j} x_j,j = 1,2,...,W mj=Nj1xωjxjj=1,2,...,W
    式中, N j N_j Nj 是来自 ω j \omega_j ωj模式向量的数量,求和操作对所有这些向量执行(即对于所有同模式类的样本 所对应的模式向量)。W是模式类的个数
    ② 求位置模式向量 x x x 的类成员的一种方法是,将他赋给其最接近的原型类。使用欧氏距离求接近程度可将该问题简化为计算如下距离测度:
    D j ( x ) = ∥ x − m j ∥ , j = 1 , 2 , . . , W D_j(x) = \Vert x - m_j \Vert ,j = 1,2,..,W Dj(x)=xmjj=1,2,..,W
    然后,若D_i(x)最小距离,则把 x x x 赋给类 ω i \omega_i ωi 。也就是说距离意味着该式表现最好的匹配
    即:以未知模式向量距 各模式类的原型模式向量的距离,判定该未知模式向量 从属于 哪个模式类
    ③ 对于最小距离分类器对应的 d j ( x ) d_j(x) dj(x)(决策函数,其返回最大值时 等效于 上述的最小距离时的情况,并且决定模式向量的归属):
    d j ( x ) = x T m j − 1 2 m j T m j , j = 1 , 2 , . . . , W d_j(x) = x^Tm_j - \frac{1}{2}m_j^T m_j ,j = 1,2,...,W dj(x)=xTmj21mjTmjj=1,2,...,W
    并在 d i ( x ) d_i(x) di(x) 取最大数值时,将 x x x 划归 类 ω i \omega_i ωi。该函数等同于选择最小距离(即二值目标一致,均能确定 x x x 属于哪个 类 ω i \omega_i ωi)
    ④ 对于最小距离分类器,类 ω i \omega_i ωi 和 类 ω j \omega_j ωj 之间的决策边界为
    d i j ( x ) = d i ( x ) − d j ( x ) = x T ( m i − m j ) − 1 2 ( m i − m j ) T ( m i + m j ) = 0 d_{ij}(x) = d_i(x) - d_j(x) = x^T(m_i - m_j) - \frac{1}{2}(m_i - m_j)^T (m_i + m_j) = 0 dij(x)=di(x)dj(x)=xT(mimj)21(mimj)T(mi+mj)=0
    式中给出的决策面是连接 m i m_i mi m j m_j mj 的线段的垂直等分线。n表示模式向量中分量(描绘子)的个数。n = 2,垂直等分线是一条直线;n = 3时,它是一个平面;n > 3时,它是一个超平面
    在这里插入图片描述

在这里插入图片描述

  • 相关匹配
    ① 大小为 m*n 的模板 w ( x , y ) w(x,y) w(x,y) 与图像f(x,y)的相关可表示为
    c ( x , y ) = ∑ s ∑ s w ( s , t ) f ( x + s , y + t ) c(x,y) = \sum_s \sum_s w(s,t)f(x+s,y+t) c(x,y)=ssw(s,t)f(x+s,y+t)
    其中,求和的上下限取 w 和 f 的共同范围(滑动时的重叠部分)。空间相关通过相关定理与函数的变换相联系(傅里叶变换对):

在这里插入图片描述

式中,在这里插入图片描述表示空间相关, F ∗ F^* F 是 F 的共轭复根
② 归一化相关系数(反映 模板图像(w) 与 目标图像( f ( x , y ) f(x,y) f(x,y))中与之同大小区域 的相关性):
γ ( x , y ) = ∑ s ∑ t [ w ( s , t ) − w ‾ ] ∑ s ∑ t [ f ( x + s , y + t ) − f ‾ x y ] { ∑ s ∑ t [ w ( s , t ) − w ‾ ] 2 ∑ s ∑ t [ f ( x + s , y + t ) − f ‾ x y ] 2 } 1 2 \gamma(x,y) = \frac{\displaystyle\sum_s \displaystyle\sum_t[w(s,t) - \overline w]\displaystyle\sum_s \displaystyle\sum_t[f(x+s,y+t) - \overline f_{xy}]}{\{ \displaystyle\sum_s \displaystyle\sum_t[w(s,t) - \overline w]^2 \displaystyle\sum_s \displaystyle\sum_t[f(x+s,y+t) - \overline f_{xy}]^2 \}^\frac{1}{2}} γ(x,y)={st[w(s,t)w]2st[f(x+s,y+t)fxy]2}21st[w(s,t)w]st[f(x+s,y+t)fxy]
其中,求和的上下限取 w w w f f f 的共同范围(滑动时,重合的区域), w ‾ \overline w w 是模板的平均值(模板系数的平均值,只计算一次) f ‾ x y \overline f_{xy} fxy f f f 中与 w w w 重合区域的平均值。通常,我们将 w w w 称为模板,而将 相关称为 模板匹配 γ ( x , y ) \gamma(x,y) γ(x,y) 的值域为 [-1,1],因而 f f f w w w 的幅值变化是归一化的。
a) 当个归一化的 w w w f f f 中对应的归一化区域相同时, γ ( x , y ) \gamma(x,y) γ(x,y)出现 最大值。这说明 最大相关(即最可能匹配)。
b) 当两个归一化函数在归一化系数求解中为最小值时,则两个归一化函数具有为最小相似性。
在这里插入图片描述


2.2 最佳统计分类器 P564 - P570

  • 考虑一种识别的 概率方法。在平均意义上有可能推导出一种最佳分类方法,用这种方法会产生 最低的错误分类的概率

  • 基础知识
    来自 类 ω i \omega_i ωi 的特定 模式x 的概率 表示为 p ( ω i / x ) p(\omega_i / x) p(ωi/x) (即表示x是来自 ω i \omega_i ωi的概率)
    ② 如果模式分类器判断 x 是来自(从属于) 类 ω j \omega_j ωj,而实际上它来自类 ω i \omega_i ωi,那么分类器就会导致一次 损失(即分类器分错时的损失量),表示为 L i j L_{ij} Lij 。由于 x 可能属于所考虑的 W 个类中的任何一个类,故 将模式 x 赋予 类 ω j \omega_j ωj平均损失
    r j ( x ) = ∑ k = 1 W L k j p ( ω k / x ) r_j(x) = \displaystyle\sum_{k=1}^W L_{kj} p(\omega_k / x) rj(x)=k=1WLkjp(ωk/x)
    该式在决策理论属于中通常称为 a) 条件平均风险 或 b) 损失
    ③ 由 p ( A ∣ B ) = [ p ( A ) p ( B ∣ A ) ] / p ( B ) p(A|B) = [p(A) p(B|A)] / p(B) p(AB)=[p(A)p(BA)]/p(B) (条件概率知识)进一步推导 ② 中式子,可得
    r j ( x ) = 1 p ( x ) ∑ k = 1 W L k j p ( x / ω k ) P ( ω k ) r_j(x) = \frac{1}{p(x)}\displaystyle\sum_{k=1}^W L_{kj} p(x/\omega_k) P(\omega_k) rj(x)=p(x)1k=1WLkjp(x/ωk)P(ωk)
    式中, p ( x / ω k ) p(x/\omega_k) p(x/ωk) 是来自 ω k \omega_k ωk 的模式的 概率密度函数 P ( ω k ) P(\omega_k) P(ωk) ω k \omega_k ωk 出现的概率。由于 1 / p ( x ) 1/p(x) 1/p(x) 为正,且对所有的 r j ( x ) r_j(x) rj(x),j = 1,2,…,W 均是如此,因此忽略该项,可得简化后的 平均损失表达式 为:
    r j ( x ) = ∑ k = 1 W L k j p ( x / ω k ) P ( ω k ) r_j(x) = \displaystyle\sum_{k=1}^W L_{kj} p(x / \omega_k) P(\omega_k) rj(x)=k=1WLkjp(x/ωk)P(ωk)
    ④ 分类器由 W 个可能的类,任何给定的位置模式可从这些类中选择。如果分类器的每个模式 x 计算 r 1 ( x ) , r 2 ( x ) , . . . , r W ( x ) r_1(x),r_2(x),...,r_W(x) r1(x),r2(x),...,rW(x),并将该模式最低损失赋给相应的类,则 关于所有决策(即对不同模式进行的全部决策判定)的总体平均损失将是最低的。这种将总体平均损失降至最低的分类器称为 贝叶斯分类器。因此,如果 r i ( x ) < r j ( x ) , j = 1 , 2 , . . . , W 且 j ≠ = i r_i(x) < r_j(x),j = 1,2,...,W 且 j \neq = i ri(x)<rj(x)j=1,2,...,Wj==i,那么 贝叶斯分类器将 未知模式x赋给 $ \omega_i $ 。换句话说,如果对所有的 j 且 j ≠ i j \neq i j=i

    ∑ k = 1 W L k i p ( x / ω k ) P ( ω k ) < ∑ q = 1 W L q i p ( x / ω q ) P ( ω q ) \displaystyle\sum_{k=1}^W L_{ki} p(x / \omega_k) P(\omega_k) < \displaystyle\sum_{q=1}^W L_{qi} p(x / \omega_q) P(\omega_q) k=1WLkip(x/ωk)P(ωk)<q=1WLqip(x/ωq)P(ωq)
    那么 x 将赋值给 ω i \omega_i ωi(即:将未知模式以最小损失赋给相应的类)

    ⑤ 正确的决策的损失通常被赋予 零值,而不正确的损失通常被赋予相同的非零值(譬如值1)。按照这样的条件,损失函数 变为:
    L i j ( x ) = 1 − δ i j L_{ij}(x) = 1 - \delta_{ij} Lij(x)=1δij
    式中,

    a) i = j i = j i=j 时, δ i j = 1 \delta_{ij} = 1 δij=1
    b) i ≠ j i \neq j i=j 时, δ i j = 0 \delta_{ij} = 0 δij=0
    即:不正确的决策的损失为 1,正确的损失为 0

    ⑥ 整合上述各式
    a) r j ( x ) = ∑ k = 1 W ( 1 − δ k j ) p ( x / ω k ) P ( ω k ) = ∑ k = 1 W p ( x / ω k ) P ( ω k ) − p ( x / ω j ) P ( ω j ) r_j(x) = \displaystyle\sum_{k=1}^W (1 - \delta_{kj}) p(x / \omega_k) P(\omega_k) = \displaystyle\sum_{k=1}^W p(x / \omega_k) P(\omega_k) - p(x / \omega_j) P(\omega_j) rj(x)=k=1W(1δkj)p(x/ωk)P(ωk)=k=1Wp(x/ωk)P(ωk)p(x/ωj)P(ωj)
    = p ( x ) − p ( x / ω j ) P ( ω j ) = p(x) - p(x / \omega_j) P(\omega_j) =p(x)p(x/ωj)P(ωj)
    b) 若对于所有的 j ≠ i j \neq i j=i均有:(即存最小损失值)
    p ( x ) − p ( x / ω i ) P ( ω i ) < p ( x ) − p ( x / ω j ) P ( ω j ) p(x) - p(x / \omega_i) P(\omega_i) < p(x) - p(x / \omega_j) P(\omega_j) p(x)p(x/ωi)P(ωi)<p(x)p(x/ωj)P(ωj)
    c) 等效于 b)中的式子:
    p ( x / ω i ) P ( ω i ) > p ( x / ω j ) P ( ω j ) , j = 1 , 2 , . . . , W p(x / \omega_i) P(\omega_i) > p(x / \omega_j) P(\omega_j),j = 1,2,...,W p(x/ωi)P(ωi)>p(x/ωj)P(ωj)j=1,2,...,W
    此时, 贝叶斯分类器将模式 x 赋给 类 ω i \omega_i ωi
    d) 得到,0-1 损失函数的 贝叶斯分类器 对应的 决策函数 为:
    d j ( x ) = p ( x / ω j ) P ( ω j ) , j = 1 , 2 , . . . , W d_j(x) = p(x / \omega_j) P(\omega_j),j = 1,2,...,W dj(x)=p(x/ωj)P(ωj)j=1,2,...,W
    式中,模式向量 x 赋给其 决策函数 取得 最大值 的类

  • 高斯模式类的贝叶斯分类器
    ① 考虑 贝叶斯分类器的决策函数,
    d j ( x ) = p ( x / ω j ) P ( ω j ) , j = 1 , 2 , . . . , W d_j(x) = p(x / \omega_j) P(\omega_j),j = 1,2,...,W dj(x)=p(x/ωj)P(ωj)j=1,2,...,W
    其中, p ( x / ω j ) p(x / \omega_j) p(x/ωj):概率密度函数,受模式向量的分量数目 n 的影响,可能是 n 元函数,如果其函数形式未定,则在实际应用中很困难实现。由于这个原因,使用贝叶斯分类器时,通常 假设对各种密度函数有一个解析表达式,且来自每个类的样本模式有一个必须的参数估计。目前, p ( x / ω j ) p(x / \omega_j) p(x/ωj)的最为通用的假设形式是 高斯概率密度函数

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述


2.3 神经网络 P570 - P585

  • 前面讨论的方法使用样本模式来估计每个模式类。最小距离分类器 完全由每个类 均值向量 来确定。类似的,对于总体为高斯分布的 贝叶斯分类器 ,完全由每个类的 a)均值向量 和 b)协方差均值 来确定
    ① 用于估计这些参数的(已知其所属的类)模式通常称为 训练模式,来自每个类的这样一组模式称为 训练集
    使用 训练集 得到的 决策函数 的过程称为 学习 或 训练

  • 对于最小距离分类器 与 贝叶斯分类器,训练很简单。每个类的训练模式被用于计算对应于该类的决策函数的参数。估计出问题中的参数后,分类器的结构也被固定,且其最终的性能将取决于 实际模式总体 是否满足 分类方法推导所做的统计假设

  • 但是一个问题中的模式类的统计特性通常是未知的,或者是无法估计的。实际上,此类决策理论问题最好由 直接通过训练生成所需决策函数 的方法来处理。然后,没有必要再做关于 a)基本的概率密度函数 或 b)关于所考虑模式类的其他概率信息的假设

  • 背景知识
    ① 基于神经网络实现决策的本质是 基于非线性计算单元(称为神经元),这些单元以网络的形式进行组织,就像大脑中互联的神经元那样。以此得到的模型我们称之为 神经网络

  • 两个模式类的感知机
    ① 感知机:学习一个线性决策函数,用以正确地分离训练集的模式表示的类(即分离不同训练集表示的类)
    ② 在这种最基本的形式中,感知机学习一个线性决策函数,该决策函数 对分两个线性可分的训练集。图 12.14(a)显示了两个模式类的感知机模型。
    在这里插入图片描述

这个基本装置的响应基于其输入的加权和,即
d ( x ) = ∑ i = 1 n w i x i + w n + 1 d(x) = \displaystyle\sum_{i=1}^n w_i x_i + w_{n+1} d(x)=i=1nwixi+wn+1
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 训练算法
    ① 线性可分算法
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

② 不可分类(不存在(超)平面分割训练集)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

③ 多层前馈神经网络
a) 基本结构
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
b) 反向传播训练
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

c) 决策面的复杂性
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


三、结构方法 P585 - P587

  • 12.2 节中讨论的技术 可定量地处理模式,并且忽略了模式形状中固有的结构关系。本节讨论的 结构方法 可通过精确地运用这些类型的关系来实现模式识别的目的

3.1 匹配形状数 P585 - P586

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


3.2 串匹配 P586 - P587

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


本章知识点总结

  • 模式与模式类概念自总结
    ① 模式 类似于 编程中 对象 的概念
    ② 模式类 类似于 编程中 的概念
  • 模式向量、串和树概念自总结
    ① 模式向量中的各分量(描述子)性质,取决于 描述物理模式本身的方法。模式向量由 定量信息(描述子)表征
    ② 对于指纹识别等问题,使用结构方法通常能得到解决,因为这种问题不仅 a) 定量度量每个特性,而且 b)这些特性间的空间关系决定了(模式)类别的成员
    ③ 串描述适合于生成其结构是基于 基元 的简单链接,并且通常是和 边界形状有关系的目标模式和其他实体模式
    ④ 对于多层排序方案都会导致树结构
  • 决策函数理论自总结
    ① 每个模式类 x x x 对应一个 决策函数 d i ( x ) d_i(x) di(x),决策函数的返回值大小反映了:某一模式 x x x 属于 模式类 ω i \omega_i ωi的程度,决策函数的返回值 越大从属程度越高,其中最大返回值决定 模式从属于哪个模式类
  • 38
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ModelBulider

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值