Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder
1、背景介绍
脓毒症是一种异质性临床综合征,是医院重症监护病房(ICU)死亡的主要原因。确定脓毒症的亚表型可以进行更精确的治疗,并导致更有针对性的临床干预。最近,电子健康记录(EHR)上的败血症分型引起了医疗研究人员的兴趣。然而,大多数脓毒症亚型研究忽略了EHR数据的暂时性,并且缺少数值。在本文中,我们提出了一个新的败血症分型框架来解决这两个问题。我们的子类型框架包括一个新的时间感知多模式自动编码器(TAME)模型,该模型引入了时间感知注意机制,并结合了多模式输入(如人口统计、诊断、药物、实验室测试和生命体征)来插补缺失值,一种动态时间包装(DTW)方法用于根据插补EHR数据测量患者的时间相似性,并采用加权k-means算法对患者进行聚类。对真实数据集的综合实验表明,TAME在插补精度方面优于基线。在分析TAME输入的EHR数据后,我们确定了脓毒症患者的四种新的亚表型,为改进脓毒症管理的个性化铺平了道路。
2、问题描述
现有研究存在两个主要局限性。(i) 现有的脓毒症分型框架采用临床变量的聚合来计算患者的相似性,忽略了变量的暂时性、EHR数据的重要特征。(ii)大多数现有子类型模型存在缺失值。然而,用于脓毒症患者亚型的变量有各种缺失率,特别是在患者入院和ICU入住的早期阶段,许多变量的缺失率相对较高。
3、模型方法
将人口统计、诊断、药物、实验室测量数据进行多模式融合。