KDD2020 Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder 时间感知多模式自动编码器——阅读笔记

提出了一种新的脓毒症亚表型识别框架,利用时间感知多模式自动编码器(TAME)处理电子健康记录(EHR)数据的暂时性和缺失值问题。通过对真实数据集的实验,发现TAME在插补精度上优于基线方法,并成功识别出四种新的脓毒症亚表型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder

1、背景介绍

脓毒症是一种异质性临床综合征,是医院重症监护病房(ICU)死亡的主要原因。确定脓毒症的亚表型可以进行更精确的治疗,并导致更有针对性的临床干预。最近,电子健康记录(EHR)上的败血症分型引起了医疗研究人员的兴趣。然而,大多数脓毒症亚型研究忽略了EHR数据的暂时性,并且缺少数值。在本文中,我们提出了一个新的败血症分型框架来解决这两个问题。我们的子类型框架包括一个新的时间感知多模式自动编码器(TAME)模型,该模型引入了时间感知注意机制,并结合了多模式输入(如人口统计、诊断、药物、实验室测试和生命体征)来插补缺失值,一种动态时间包装(DTW)方法用于根据插补EHR数据测量患者的时间相似性,并采用加权k-means算法对患者进行聚类。对真实数据集的综合实验表明,TAME在插补精度方面优于基线。在分析TAME输入的EHR数据后,我们确定了脓毒症患者的四种新的亚表型,为改进脓毒症管理的个性化铺平了道路。

2、问题描述

现有研究存在两个主要局限性。(i) 现有的脓毒症分型框架采用临床变量的聚合来计算患者的相似性,忽略了变量的暂时性、EHR数据的重要特征。(ii)大多数现有子类型模型存在缺失值。然而,用于脓毒症患者亚型的变量有各种缺失率,特别是在患者入院和ICU入住的早期阶段,许多变量的缺失率相对较高。

3、模型方法

在这里插入图片描述
将人口统计、诊断、药物、实验室测量数据进行多模式融合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值