速算常见规律

一、整除判定

整除判定是指判断一个数是否能被另一个数整除的方法和规则。‌‌

  • 常见整数的整除判定规则

    • 整除2‌:一个数的个位数是0、2、4、6或8,那么这个数能被2整除。
    • 整除3‌:一个数的各位数字之和能被3整除,那么这个数能被3整除。
    • 整除4‌:一个数的末两位数能被4整除,那么这个数能被4整除。
    • 整除5‌:一个数的个位数是0或5,那么这个数能被5整除。
    • 整除6‌:一个数如果同时满足整除2和3的规则,那么这个数能被6整除。
    • 整除8‌:一个数的末三位数能被8整除,那么这个数能被8整除。
    • 整除9‌:一个数的各位数字之和能被9整除,那么这个数能被9整除。(2次除以3)
    • 整除10‌:一个数的个位数是0,那么这个数能被10整除。
    • 整除11‌:一个数的各位数字交替求和(奇数位之和减去偶数位之和)的结果能被11整除,那么这个数能被11整除。
    例1: 对于数字“12345678910”:奇数位和为1+3+5+7+9+1=26,偶数位和为2+4+6+8+0=20,
    差值为26-20=6,显然6不能被11整除,因此“12345678910”也不能被11整除。
    例2: 1,2,3,4,5,6,7,8,9 这九个数码排出一个能被 11 整除,且最大的九位数,并且简述排数的过程?
    1. a+b= 45
    2. a-b=11k
    3. k=0,2等, 无解
    4. k=1, a=28, b=17
    5. k=3, a=39, b=6; 任意4位数相加都>6, 所以排除系数k=3, 可知k=1, a=28, b=17
    6. 最大9位数,987654321最大,但是 奇数位和偶数位之和需要是11的倍数。
    7. 尽量保证987654321最大进行排序,b=8+6+?=17, ?=3, 所以第6位+第8位=3,为2+1
    8. 尽量保证987654321最大进行排序,a=9+7+?=28, ?=12, 所以第5位+第7位+第9位=12, 为5+4+3
    9. 可知结果: 987652413
    结论:
    从右往左分别计算奇数位和偶数位之和,分别设为a, b. 可得公式
    a - b = 11k; (a与b的差 是 11的倍数)
    
  • 特殊情况的整除判定规则

    • 7的整除判定‌:一个数的个位数截去,再从余下的数中减去个位数的两倍,如果差是7的倍数,则原数能被7整除;或者末三位数与前面的数做差所得到的数是7的倍数。
      例1: 347, 34-2*7=20, 20/7=2余6, 所以347不是7的倍数
      例2: 4347, 434-2*7=420, 42-2*0=42, 42/7=6, 所以4347是7的倍数
      例3: 4347, 347-4=343, 34-2*3=28, 28/7=4, 所以4347是7的倍数
      
    • 13的整除判定‌:一个数的末三位数与前面的数做差所得到的数是13的倍数。
      例1: 4347, 347-4=343, 343/13=26.38, 所以4347不是13的倍数
      例2: 13169, 169-13=156, 156/13=12, 所以13169是13的倍数
      例3: 17088773, 17088-773=16315, 315-16=299, 299/13=23, 所以17088773是13的倍数
      

二、两个分数的比较

总结

方法适用场景适用性
交叉相乘法适合两个分数快速比较最快
近似比较法适合特定情况估算仅适用于特定情况
通分法适合多个分数排序适中
小数化法适合大致估算较快,但可能不精确

如果需要快速解决两个分数的比较,推荐使用 交叉相乘法


方法 1:交叉相乘法(适用于两个分数)

对于两个分数 a b 和 c d \frac{a}{b} 和 \frac{c}{d} badc,可以通过 交叉相乘 来比较大小,而 不需要 计算小数:

a × d ? c × b a \times d \quad ? \quad c \times b a×d?c×b

  • 如果 a × d > c × b ,则 a b > c d a \times d > c \times b,则 \frac{a}{b} > \frac{c}{d} a×d>c×b,则ba>dc
  • 如果 a × d < c × b ,则 a b < c d a \times d < c \times b,则 \frac{a}{b} < \frac{c}{d} a×d<c×b,则ba<dc
  • 如果 a × d = c × b ,则 a b = c d a \times d = c \times b,则 \frac{a}{b} = \frac{c}{d} a×d=c×b,则ba=dc

示例:
3 7 v s 2 5 计算: 3 × 5 = 15 , 2 × 7 = 14 因为 15 > 14 ,所以 3 7 > 2 5 \frac{3}{7} \quad vs \quad \frac{2}{5} 计算: 3 \times 5 = 15, \quad 2 \times 7 = 14 因为 15 > 14,所以 \frac{3}{7} > \frac{2}{5} 73vs52计算:3×5=15,2×7=14因为15>14,所以73>52

方法 2:利用近似比较(适用于特定场景)

对于特定情况下的近似比较,可以使用一些估算技巧:

  • 如果两个分数的分母相近,比较分子即可
    • 例如, 7 15 和 8 16 ,分母相近( 15 和 16 ),但 7 < 8 ,所以 7 15 < 8 16 \frac{7}{15} 和 \frac{8}{16} ,分母相近(15 和 16),但 7 < 8,所以 \frac{7}{15} < \frac{8}{16} 157168,分母相近(1516),但7<8,所以157<168
  • 如果两个分子相近,比较分母
    • 例如, 9 20 和 9 18 ,分子相同,但 18 < 20 ,所以 9 18 > 9 20 (分母越小,数值越大) \frac{9}{20} 和 \frac{9}{18},分子相同,但 18 < 20,所以 \frac{9}{18} > \frac{9}{20} (分母越小,数值越大) 209189,分子相同,但18<20,所以189>209(分母越小,数值越大)

方法 3:通分法(适用于多个分数排序)

如果需要比较多个分数,可以先通分,使它们具有相同的分母,再比较分子。
最小公倍数 (LCM) 作为新分母,然后调整分子后比较。

示例:
3 8 , 5 12 , 7 16 \frac{3}{8}, \quad \frac{5}{12}, \quad \frac{7}{16} 83,125,167
步骤:

  1. 求最小公倍数:8, 12, 16 的 最小公倍数 是 48。
  2. 通分:
    • 3 8 = 18 48 \frac{3}{8} = \frac{18}{48} 83=4818
    • 5 12 = 20 48 \frac{5}{12} = \frac{20}{48} 125=4820
    • 7 16 = 21 48 \frac{7}{16} = \frac{21}{48} 167=4821
  3. 比较分子:( 18 < 20 < 21 ),所以:
    3 8 < 5 12 < 7 16 \frac{3}{8} < \frac{5}{12} < \frac{7}{16} 83<125<167

方法 4:小数化(适用于近似比较)

如果只需要大致判断,可以直接将分数转换成小数进行对比:
3 7 ≈ 0.4286 , 2 5 = 0.4 \frac{3}{7} \approx 0.4286, \quad \frac{2}{5} = 0.4 730.4286,52=0.4
因为 0.4286 > 0.4,所以 3 7 > 2 5 \frac{3}{7} > \frac{2}{5} 73>52

小数化方法可能会损失精度,不适合精确计算或多个分数排序。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值