下载、安装、运用Graphviz时遇到的问题及解决方式

1.下载

graphviz-2.38.msi
链接:https://pan.baidu.com/s/1G9xelnnnp5tpJ7LEnCKsNA
提取码:2aw0

2.安装

直接一直next就好啦
关键是要配置环境变量
win+R然后在出现的对话框里输入sysdm.cpl

在这里插入图片描述
选择高级
在这里插入图片描述
选择环境变量
①在用户环境变量下新增变量名为 GRAPHVIZ_INSTALL_DIR
值为自己下载Graphviz的地址如:D:\Graphviz
②在系统环境变量下新增变量名为 GRAPHVIZ_DOT
值(自己下载Graphviz的地址下的bin文件夹下的dot.exe文件)如:D:Graphviz\bin\dot.exe
③在系统环境变量下名为PATH的变量下新增值(自己下载Graphviz的地址下的bin文件夹)如:D:\Graphviz\bin

设置好环境变量之后win+R在出现的对话框中输入cmd
然后输入dot -version如果出现相应版本信息则说明配置成功!

然后自己安装后运行pycharm中决策树相关代码的时候遇到了一些问题
报错:pydotplus.graphviz.InvocationException: GraphViz’s executables not found
解决方法:
重启pycharm就好啦。

### 已安装 Keras 但 `keras.utils` 出现错误的原因 在使用 Keras 的过程中,如果遇到与 `keras.utils` 相关的报错问题,通常是由以下几个原因引起的: 1. **版本兼容性问题** 随着 TensorFlow 和 Keras 版本的不断更新,某些功能可能被废弃或迁移到其他模块中。例如,在较新的 TensorFlow 版本中,Keras 被集成到了 TensorFlow 中,因此部分函数的位置发生了变化[^2]。 2. **依赖库未正确安装** 如果涉及到图形绘制等功能(如 `plot_model`),则需要额外安装诸如 PyDot 或 GraphViz 这样的依赖库。缺少这些工具可能导致运行抛出 ImportError[^1]。 3. **命名空间冲突或路径配置错误** Python 环境中的包管理不当也可能引发此类问题。比如多个不同版本的 Keras 安装在同一环境中,或者虚拟环境设置不正确,都会影响正常调用[^5]。 --- ### 解决方案 #### 方法一:调整导入方式以适配新版本 对于因版本更迭而导致的功能位置变动,可以尝试修改导入语句来匹配当前使用的框架版本。例如: - 若原代码中有如下写法: ```python from keras.utils.np_utils import to_categorical ``` 则应改为适用于最新版 TensorFlow 的形式: ```python from tensorflow.keras.utils import to_categorical ``` 此更改解决了由 Keras 升级带来的 API 变化所引起的问题。 #### 方法二:确认并补充必要的外部依赖项 当执行像 `plot_model()` 这类方法,需确保系统已成功安装所需的支持软件及其对应的 Python 绑定程序。具体操作步骤如下所示: 1. 使用 pip 安装 pydot 库; ```bash pip install pydot ``` 2. 下载 graphviz 并完成本地部署 (针对 Windows 用户可通过 Chocolatey 实现自动化流程),随后再通过 pip 添加 python-graphviz 支持; ```bash conda install graphviz pip install pydot-ng ``` 上述措施能够有效规避因缺失必要组件而产生的异常状况^4]. #### 方法三:清理冗余包重新构建纯净开发环境 为了避免潜在干扰因素的存在, 推荐创建独立的新 Conda/Virtualenv 来隔离测试目标应用所需的全部依赖集合. ```bash # 创建一个新的Conda环境名为my_keras_env conda create --name my_keras_env python=3.8 # 激活该环境 conda activate my_keras_env # 更新pip至最新状态 pip install --upgrade pip setuptools wheel # 根据需求指定确切版本号进行安装(这里假设采用TF2.x系列) pip install tensorflow==2.9.0 keras matplotlib scikit-learn pandas numpy jupyterlab ``` 这样做的好处在于可以从根源上去除任何残留旧数据的影响从而获得更加稳定可靠的计算平台. #### 方法四: 修改源码适应现有条件限制 假如确定无法轻易改变既有项目的结构又不想频繁切换基础架构的话,则可以直接编辑相关联的核心文件内部实现细节达到临修复目的。不过需要注意的是这种做法风险较大容易埋下隐患除非万不得已一般都不建议采取这种方式处理生产级别任务.[^5] --- ### 总结 综上所述,面对各种类型的 `keras.utils` 错误提示首先要仔细甄别背后真正诱因所在;其次按照实际情况灵活运用以上介绍过的几种常见应对策略逐一排查直至彻底消除障碍为止。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值