OpenCV库的学习笔记(八)Image Gradients

目标

  • 找到图像梯度,边缘等。
  • 我们将看到以下函数:cv.Sobel()cv.Scharr()cv.Laplacian() 等。

理论知识

OpenCV 提供了三种类型的梯度滤波器高通滤波器SobelScharrLaplacian。我们将看到他们中的每一个。这主要寻找的是图像边缘信息。

Sobel 和 Scharr 导数 

Sobel算子是联合高斯平滑加微分运算,因此抗噪能力更强。您可以指定要采用的导数方向垂直水平(分别通过参数 yorder xorder)。您还可以通过参数 ksize 指定内核的大小。如果 ksize = -1,则使用 3x3 Scharr 滤波器,其结果优于 3x3 Sobel 滤波器。

拉普拉斯导数

它计算由关系 \bigtriangleup src=\frac{\partial ^{2}src }{\partial x^{2}}+\frac{\partial ^{2}src }{\partial y^{2}}给出的图像的拉普拉斯算子,其中使用 Sobel 导数找到每个导数。如果 ksize = 1,则使用以下内核进行过滤:

代码

下面的代码在一个图表中显示了所有运算符。所有内核都是 5x5 大小。输出图像的深度传递 -1 以获得 np.uint8 类型的结果。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('dave.jpg',0)
laplacian = cv.Laplacian(img,cv.CV_64F)
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

注意

在我们的最后一个示例中,输出数据类型是 cv.CV_8Unp.uint8。但这有一个小问题。黑到白过渡被视为正斜率(它具有正值),而白到黑过渡被视为负斜率(它具有负值)。因此,当您将数据转换为 np.uint8 时,所有负斜率都变为零。简而言之,您错过了那个优势。

[图像处理]-Opencv中数据类型CV_8U, CV_16U, CV_16S, CV_32F 以及 CV_64F是什么?_orangezs的博客-CSDN博客_cv_8u
上面这个博客是讲述数据类型的博客,cv.CV_8U是0到255即2的8次方。

如果你想检测两个边缘,更好的选择是将输出数据类型保持为一些更高的形式,如 cv.CV_16Scv.CV_64F 等,取其绝对值然后转换回 cv.CV_8U。下面的代码演示了水平 Sobel 滤波器的这个过程和结果的差异。 

下面有代码解释如下:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('box.png',0)
# Output dtype = cv.CV_8U
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)
# Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U
sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()

效果如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值