介绍
该小说推荐系统综合运用了多种技术,以提供全面的小说推荐和管理功能。系统的核心技术包括:
-
Python:用于编写系统的各个部分,包括数据抓取、推荐算法和 Web 应用程序。
-
PySpark:利用 Spark 的强大数据处理能力进行大规模数据分析和处理,提高系统的效率和性能。
-
Hadoop:负责数据存储和处理,保证系统能够处理海量数据并具备高可靠性。
-
Django:用作 Web 框架,负责实现用户管理、小说分类、查询及后台管理等功能。Django 的 ORM 功能使得数据模型的管理更加高效。
-
Scrapy:实现数据抓取模块,从“纵横小说”网站上抓取小说数据。通过定义爬虫、解析网页和存储数据,该框架确保了数据的完整性和准确性。
-
Vue.js:用于构建前端用户界面,提供直观和响应式的用户体验。
-
Element Plus:作为 Vue.js 的 UI 框架,提供丰富的组件和交互,增强了前端的可用性和美观度。
-
协同过滤算法:实现了基于用户和物品的推荐算法,通过分析用户行为和物品相似度,向用户推荐相关的小说,提高推荐的准确性和个性化。
系统功能模块具体包括:
-
数据抓取模块:使用 S