训练model时loss出现Nan怎么办呢?

原因

  1. epoch <= 100,一般是学习率过高,降低1-10倍试试;
  2. 如果使用了RNN,可能是因为梯度爆炸,可以增加梯度截断(gradient clipping);
  3. 可能除数为0;
  4. 可能自然对数里有0或者负数ln(0) or ln(-x)
  5. 需要计算loss数组越界,即你自己创建的时候,数据结构有问题;
  6. 设计指数计算,导致某个值非常大,存储不下;
    比如不做其他处理的softmax中分子分母需要计算exp(x),值很大很大,最后可能为INF/INF,所以得到了NaN,此时需要确认使用的softmax中在计算exp(x)做了相关处理,比如减去最大值;
  7. label缺失,输入错了,后面输出怎么也不会对;

例子

  1. 梯度爆炸
  2. 不当loss function
  3. 不当输入

参考

[1] 训练网络loss出现Nan解决办法 这篇里的评论区也有很多回答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值