带你轻松了解半导体CIM系统之APC (一)

APC(Advanced Process Control),中文称先进制程控制系统,在半导体制造尤其是先进制程方面,APC系统可以帮助Fab提高芯片良率和生产效率,因此十分关键。

APC系统概述

APC系统在业界也称为R2R(Run-to-Run control),APC系统的核心概念是透过晶圆在实际生产之前的量测机台量测值(前量)或是制程生产之后的量测机台量测值(后量),对对应制程的晶圆程序的某个或某几个参数值进行实际的修正,从而起到弥补制程偏差的功效。 

APC反馈大致上分为后反馈与前反馈两种。后反馈就是透过比对材料在量测机台产生的量测值与量测目标值的之间差异,再透过某种制程演算公式进行计算之后, 返回修改或补偿下一批或下下一批晶圆的程序设定参数,这种反馈方法最常用來补偿机台因为时间渐渐飘移的问题。例如薄膜区的CMP(化学机械研磨)机台的研磨板会随着时间逐渐磨损,透过APC的回馈算法可以补偿这种逐渐飘移的效应。 所谓前反馈,主要为了补偿生产之前的制程变异,透过生产之前的量测机台量测值,经由一定演算手法换算成晶圆程序的设定值,实时修正这一批晶圆的程序参数设定值,来补偿生产之前制程变异所造成的影响。下图为APC反馈的简单示例。

图片

APC系统反馈示例

APC系统发展历史

APC系统最早运用在化工行业,在20世纪90年代初,化工行业为了攻克单回路控制的缺点,采取了基于模型的先进过程控制方法,也就是APC思想。后来借鉴于化工行业,食品制造,制药,光伏制造,半导体制造等行业都采取了APC这种先进过程控制方法,大大提高了产品良率及生产效率。

在半导体领域APC系统尤为重要,以台积电南京12寸晶圆厂一期项目为例,该项目投资额度为30亿美元,规划产能为每年24万片,即月产能2万片,单片晶圆4,000左右美元前提下粗略估计每年营业额可达9.6亿美元左右,假设初始良率90%、单片成本3,000美元的条件下,良率提升1%可使台积电南京12寸厂每月至少获利20万美元,年获利240万美元。因此APC系统是各个FAB厂提高产能与良率的解决方案之一。

在半导体制造作中,APC系统的前身历来是60年代盛行的SPC(Statistical Process Control,统计过程控制)系统。SPC的一个基本工作原理是,过程参数 在很长一段时间内保持不变。然后,SPC跟踪该过程的某些独特、单独的指标(通常是一些晶圆状态参数),并在以指定的统计指标超过既定的控制限值时宣布该过程失控。虽然这种方法有一些既定的好处,但它的缺点是它的处理域有限,也就是格局不够,只关注一个或几个参数,以及它对问题的延迟识别,发生异常不能及时处理。

随着制程越来越小,对工艺的要求也越来越高,需要检查更多的参数范围来确认工艺是否异常,需要在更短的时间内发现异常并及时调整,需要频繁测量和估算晶圆的状态参数,需要根据历史生产数据调节出适合下次的更好的参数等等,因此,传统的SPC无法满足要求,APC也逐步登上历史舞台。

APC系统核心功能

基本上APC算是某类系统的总称,是由SEMI所定义与推广的技术,通常包括下列项目:R2R(批次控制,Run-to-Run control)、FDC(故障侦测与分类,Fault Detection and Classification)、OEEOverall Equipment Efficiency)、e-Diagnostic等等项目。不过确切的范围则很难界定,一方面是因为APC的技术尚在不停开发中且各个FAB业务使用有所区别;另一方面SEMI针对APC的新标准也陆续制定出版。因此每个FAB厂对于APC的说法就有些差异,例如将FDC归类为独立的EES系统而不是APC。此外,APC中的子系统规格对于各个FAB厂差异也很大。由于后续会给FDC作另外的介绍,因此本文主要是针对APC作详细介绍,其余系统欢迎留意后续文章。

APC的功能主要包括提升制程工艺能力,减少产品OOS及报废,提升产品良率,提高生产效率等等。

图片

在APC作用下当膜厚超出Spec时及时调整

R2R是APC的核心,或者R2R就等同于APC,R2R的基本概念是透过Wafer于前制程的量测值或是制程后的量测值,微调该制程的Recipe的某个或某几个参数设定值。如下图所示,R2R大致上分为三大类:Feedback(反馈)、Feed forward(前馈)、Feedback/Feed forward(前反馈)控制。

图片

R2R控制模块. 参考于曹永诚老师

所谓Feedback control是通过比对Metrology量测值与目标值的差异,通过某种算法计算之后,回头修改或补偿下一批或下下一批Lot/Wafer的Recipe参数设定值。最常用来补偿机台因为时间渐渐飘移的问题,例如CMP的PAD会随着时间慢慢磨损,透过反馈算法可以补偿这种飘移的效应,如图下图所示。所谓Feed forward control,主要为了补偿前制程的变异,通过前制程的量测值,经由Model换算成Recipe的设定值,即时修正这批Lot/Wafer的Recipe参数设定值,以补偿前制程变异所造成的影响。例如CVD的厚度差异得用来修改后面CMP的研磨时间。

图片

CMP机台示意图、随时间变化趋势与控制器设计范例

R2R也就是APC的难点是开发出满足工艺的算法,这不仅需要对软件开发技术有一定要求,而且较难的是对复杂的半导体制造业务要有深刻的know-how能力。目前APC常用的算法有EWMA(指数加权移动平均)、PID控制、多变量统计控制(如MIMO模型)、MPC(模型预测控制)等等,随着工艺发展越先进以及AI的发展,以后可能会融入贝叶斯方法,深度学习,强化学习等流行的人工智能技术。

APC系统未来趋势

为适应越来越更先进的制程要求,未来APC系统也会与时俱进,持续更新。个人认为APC未来的发展趋势如下:

1. 虚拟量测(VM)的深度整合

虚拟量测技术通过实时数据预测关键工艺参数(如膜厚、关键尺寸),减少对物理量测设备的依赖,目前已运用于半导体制造行业。例如将VM结果反馈于APC系统,自动调整参数,比如在EUV光刻中通过VM实时补偿掩膜版误差。

同时整合传感器数据、设备日志和晶圆历史数据,提升预测精度;结合在线学习(Online Learning)和迁移学习(Transfer Learning),实时校准模型以适应工艺漂移。

2. 与AI技术相结合

通过强化学习使得多目标优化(如同时最大化良率、吞吐量和能耗效率);借助自学习控制,可以使得系统自动识别工艺偏移并调整模型;通过因果推理,从相关性分析升级到因果干预,明确工艺参数与缺陷的因果关系(如利用因果图定位蚀刻速率异常的根本原因)。

3. 边缘计算的应用

引入边缘计算技术,当APC的算法模型足够复杂时,计算速度也是值得考虑的事情,在设备端部署轻量化AI模型,可以实现计算毫秒级响应,当然这需要设备方面的同意,或者可以考虑让计算与服务运行于不同的服务器中,这部分估计还停留在理论,目前业界大概还没有实践。

总而言之,未来趋势其实就是如何提出更好的模型,如何让APC更好地服务于半导体制造业务,如何将人工智能技术与APC做到完美结合。不仅如此,AI和大模型大火的今天,“AI+”也是各行各业的趋势了。

总结

APC系统是半导体CIM系统中一个十分关键的系统,也是一个非常复杂的系统,需要先进的IT技术与半导体制造业务相结合,同时也要在使用过程中不断完善,模型不断调优,正如前面所说APC带来的效益还是非常值得的,尤其是先进制程方面。APC涉猎较多,后续篇章也会详细APC相关算法与技术细节方面,敬请期待!

图片

APC赋能半导体智能制造


往期半导体CIM系统介绍推荐阅读

    参考料:

    - 曹永诚. APC导论

    - 李剑. 半导体工业软件

    - 许涛. 基于SECS的半导体自动控制系统设计与实现

    - 长江证券行业报告

                                           关注一下,后续有更多精彩内容~图片

                                    

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值