一、前期准备
使用dataset下载CIFAR10数据集,并划分好训练集与测试集
使用dataloader加载数据,并设置好基本的batch_size
1、导入数据
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
2、数据可视化
transpose((1, 2, 0))详解:
● 作用是对NumPy数组进行轴变换,transpose函数的参数是一个元组,定义了新轴的顺序。原始PyTorch张量通常是以(C, H, W)的格式存储的,其中:
○ C是通道数(例如,RGB图像有3个通道)。
○ H是图像的高度。
○ W是图像的宽度。
● transpose((1, 2, 0))将轴的顺序从(C, H, W)转换为(H, W, C),这使得数据格式更适合可视化和处理。
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
# 进行轴变换
npimg = imgs.numpy().transpose((1, 2, 0))
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.

最低0.47元/天 解锁文章
764

被折叠的 条评论
为什么被折叠?



