P2CIFAR10彩色图片识别

一、前期准备

使用dataset下载CIFAR10数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size
1、导入数据

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

2、数据可视化
transpose((1, 2, 0))详解:
● 作用是对NumPy数组进行轴变换,transpose函数的参数是一个元组,定义了新轴的顺序。原始PyTorch张量通常是以(C, H, W)的格式存储的,其中:
○ C是通道数(例如,RGB图像有3个通道)。
○ H是图像的高度。
○ W是图像的宽度。
● transpose((1, 2, 0))将轴的顺序从(C, H, W)转换为(H, W, C),这使得数据格式更适合可视化和处理。

import numpy as np

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 进行轴变换
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成210列,绘制第i+1个子图。
    plt.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值