P2 CIFAR10彩色图片识别

我的环境:

  • 语言环境:python 3.8

  • 编译器:jupyter notebook

  • 深度学习环境:Pytorch

    torch == 2.1.0+cpu

    torchvision == 0.16.0+cpu

一、准备工作

1. 数据下载

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
  • 使用torchvision.datasets下载数据(pytorch自带数据库)
    torchvision.datasets.MNIST(root,train=True, transform=None, target_transform=None, download=False)
train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data\cifar-10-python.tar.gz


100%|███████████████████████████████████████████████████████████████| 170498071/170498071 [02:13<00:00, 1275979.81it/s]


Extracting data\cifar-10-python.tar.gz to data
Files already downloaded and verified

2. 数据加载(设置batchsize和取样等功能)

  • 使用torch.utils.data.DataLoader进行数据加载

    torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None,sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)
    在这里插入图片描述

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)
imgs, labels = next(iter(train_dl))
imgs.shape # shape = [batch_size,channel,height,weight]
torch.Size([32, 3, 32, 32])

3. 图片可视化

plt库的函数:

  • plt.figure() 创建一个画板。figsize=(x,y),表示空白画布的横纵坐标比;dpi=x表示像素的个数,是对图像大小的控制。
  • plt.subplot(x,y,z) 分成x行y列,当前位置的index=z。
  • plt.xticks() x轴坐标,第一个参数表示设置的步长大小;第二个参数表示显示的坐标轴刻度,默认为坐标的值。
  • plt.yticks() y轴坐标,同上。
  • plt.xlabel()、plt.ylabel()和plt.title()函数分别用于设置x坐标轴、y坐标轴和图标的标题信息。
  • plt.grid(False/True) 显示网格线。
  • plt.imshow(x,……) 用于显示图像数据或数组x,将其可视化为图像。它将数组中的每个元素的值映射为一个颜色,并将这些颜色排列成图像的形式。
  • plt.show() 显示已创建的图片。
import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码

在这里插入图片描述

二、CNN网络配置、编译、训练

在这里插入图片描述

1. 模型建立

  • C1,卷积层,提取图片特征,nn.Conv2d(inputsize,outputsize,kernel_size)
    在这里插入图片描述

  • S2,池化层,下采样,更高层的抽象,nn.MaxPool2d(kernel_size)
    在这里插入图片描述

  • C3,卷积层

  • S4,池化层

  • C5,卷积层

  • S6,池化层

  • F7,全连接层,nn.Linear(inputsize,outputsize)

  • OUTPUT,全连接层

函数:

  • nn.ReLU(),激活函数,拟合非线性数据
  • nn.Sequential,按照构造顺序连接网络
import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) #第三层卷积,卷积核大小为3*3
        self.pool3 = nn.MaxPool2d(2)
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x
model = Model()
import torchinfo
torchinfo.summary(model) #显示模型信息
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

2. 训练函数

2.1 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.2 训练函数

  1. optimizer.zero_grad(),梯度清零。
  2. loss.backward(),反向传播计算每个w的梯度值。
  3. optimizer.step(),梯度下降法更新参数值。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        #X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

train_acc和loss的计算原理:

  • pred.argmax(1)返回预测结果pred行最大值的索引,每行是表示一个样本的预测概率分布。==y表示判断预测是否正确。
  • .type(torch.float)将判断结果转为浮点类型可以进行求和。
  • .sum()对预测结果的正误进行求和。
  • .item()将求和结果转为标量值便于输出。

2.3 测试函数

去掉了训练函数中梯度下降和权重更新的步骤。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            #imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

2.4 模型训练

  1. model.train(),用于训练,启用BN层和dropout。
  2. model.eval(),用于测试,不启用BN层和dropout。
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:62.2%, Train_loss:1.077, Test_acc:61.9%,Test_loss:1.089
Epoch: 2, Train_acc:64.1%, Train_loss:1.031, Test_acc:61.8%,Test_loss:1.093
Epoch: 3, Train_acc:65.5%, Train_loss:0.986, Test_acc:59.2%,Test_loss:1.165
Epoch: 4, Train_acc:67.2%, Train_loss:0.944, Test_acc:61.8%,Test_loss:1.095
Epoch: 5, Train_acc:68.7%, Train_loss:0.908, Test_acc:64.8%,Test_loss:0.998
Epoch: 6, Train_acc:69.9%, Train_loss:0.870, Test_acc:67.0%,Test_loss:0.967
Epoch: 7, Train_acc:70.9%, Train_loss:0.836, Test_acc:67.4%,Test_loss:0.937
Epoch: 8, Train_acc:72.4%, Train_loss:0.799, Test_acc:66.5%,Test_loss:0.984
Epoch: 9, Train_acc:73.1%, Train_loss:0.770, Test_acc:67.3%,Test_loss:0.951
Epoch:10, Train_acc:74.4%, Train_loss:0.735, Test_acc:66.6%,Test_loss:0.975
Epoch:11, Train_acc:75.4%, Train_loss:0.706, Test_acc:69.7%,Test_loss:0.894
Epoch:12, Train_acc:76.7%, Train_loss:0.675, Test_acc:70.4%,Test_loss:0.882
Epoch:13, Train_acc:77.6%, Train_loss:0.646, Test_acc:70.0%,Test_loss:0.891
Epoch:14, Train_acc:78.5%, Train_loss:0.620, Test_acc:71.8%,Test_loss:0.848
Epoch:15, Train_acc:79.5%, Train_loss:0.589, Test_acc:70.9%,Test_loss:0.873
Epoch:16, Train_acc:80.2%, Train_loss:0.566, Test_acc:69.2%,Test_loss:0.953
Epoch:17, Train_acc:81.3%, Train_loss:0.539, Test_acc:71.4%,Test_loss:0.873
Epoch:18, Train_acc:82.3%, Train_loss:0.513, Test_acc:71.9%,Test_loss:0.868
Epoch:19, Train_acc:82.9%, Train_loss:0.488, Test_acc:70.2%,Test_loss:0.927
Epoch:20, Train_acc:83.8%, Train_loss:0.465, Test_acc:70.4%,Test_loss:0.963
Done

三、训练结果可视化

  • 前10次的训练结果(准确率在逐渐改善,但还不够高所以后续又进行了20轮训练)
    在这里插入图片描述
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

  • 又进行20轮训练后,可以看出准确率有一定改善,但是改善的幅度较小,可能会出现过拟合。

四、总结

  1. 本周内容进一步熟悉了pytorch框架。
  • 14
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值