医疗健康集团集团数据湖及应用平台建设方案:以“守护生命与健康”为使命,推动企业数字化转型, 建立集团数据湖及应用平台,全面提升集团智慧化经营决策管理能力。

医疗健康集团数据湖及应用平台建设方案

医疗健康集团数据湖及应用平台建设方案

  • 项目背景与使命
    • 医疗健康行业现状及挑战
    • 集团数字化转型需求与目标
    • “守护生命与健康”使命诠释
    • 项目建设意义与价值
  • 总体架构设计与技术选型
    • 集团数据湖概念及功能定位
    • 应用平台架构规划及特点
    • 关键技术选型及原因阐述
    • 安全性、稳定性保障措施
  • 数据治理与存储策略制定
    • 数据来源识别及接入方式选择
    • 数据清洗、整合和标准化流程设计
    • 存储策略制定:冷热数据分层存储
    • 备份恢复机制建立
  • 智能分析与应用场景构建
    • 业务需求梳理及分析场景划分
    • 智能化分析模型构建方法论述
    • 跨业务、跨部门融合应用场景设计
    • 创新业务模式探索
  • 平台服务能力与共享机制建设
    • 服务能力评估及提升途径探讨
    • 集团内部资源共享机制设计
    • 外部合作伙伴接入和共享策略
    • 持续运营和维护保障
  • 智慧化决策支持体系打造
    • 实时监测和预警预测功能实现
    • 辅助决策支持系统构建
    • 智慧化决策流程和工具选择
    • 持续改进和优化方向
  • 项目实施计划与风险管理
    • 详细实施步骤和时间节点安排
    • 资源需求评估和保障措施制定
    • 潜在风险识别、评估及应对方案
    • 项目成功关键因素分析

 

第1张

大家好!我今天要介绍的主题是:医疗健康集团数据湖及应用平台建设方案

第2张

我们今天主要从以下几个方面展开介绍:

项目背景与使命

总体架构设计与技术选型

数据治理与存储策略制定

智能分析与应用场景构建

平台服务能力与共享机制建设

智慧化决策支持体系打造

项目实施计划与风险管理

第3张

下面介绍项目背景与使命。

第4张

首先,各位可能都感受到了,不同的医疗机构之间的数据并不互通,就像一个个信息孤岛,这严重影响了我们医疗服务的效率和质量。想象一下,如果病人在一家医院做了检查,然后在另一家医院却无法获取这些结果,这不仅浪费了时间和资源,还可能影响医生的判断和治疗效果。

其次,我们的数据标准化程度相对较低。由于缺乏统一的数据标准和规范,各个医疗机构的数据质量参差不齐,这给后续的数据分析和利用带来了极大的困难。就像我们想要从一堆混乱的积木中搭建一个稳固的建筑,难度可想而知。

最后,隐私保护问题也是我们必须重视的。医疗健康数据涉及个人隐私,如何在保障数据安全的前提下进行有效利用,这是我们必须要解决的一大挑战。我们不能因为追求技术进步,而忽视了保护每一个人的合法权益。

因此,我们提出了医疗健康集团数据湖及应用平台建设方案,旨在解决上述问题,提高医疗服务效率和质量,推动医疗健康行业的数字化进程。

第5张

随着数字化转型的深入,我们迫切需要通过技术手段整合集团内部各医疗机构的数据资源,打破信息孤岛,实现数据共享和协同工作。这不仅有助于提高医疗服务效率,为患者带来更好的就医体验,还能为我们的医疗科研工作提供强大的数据支撑。

因此,我们提出了建设数据湖及应用平台的方案。首先,通过数据湖的建设,我们可以集中存储和管理各医疗机构的数据资源,实现数据的统一管理和利用。同时,基于数据湖,我们可以构建各种应用平台,如智能诊疗平台、科研创新平台等,以满足不同业务部门的需求。

在智能诊疗平台方面,我们可以利用大数据、人工智能等技术手段,实现医疗服务的智能化、精准化。通过数据分析,我们可以为患者提供更加个性化的治疗方案,提高治疗效果。同时,通过智能化管理,我们还可以优化医疗资源的配置,提高医疗服务效率。

在科研创新平台方面,我们可以基于海量的医疗健康数据,开展科研创新工作。通过对数据的深入挖掘和分析,我们可以发现新的医学规律和研究方向,推动医学研究和临床实践的进步。

总之,数据湖及应用平台的建设是我们医疗健康集团数字化转型的重要一步。通过这一方案的实施,我们将能够更好地整合资源、提高效率、推动创新,为患者和医学事业的发展做出更大的贡献。

第6张

在这个数字化的时代,医疗健康集团也在积极地进行转型和升级,通过科技创新来推动整个医疗健康产业的进步,让我们的医疗服务更加优质、高效。当然,作为一个有担当的企业,医疗健康集团在应对突发公共卫生事件等方面,也需要积极承担社会责任,用我们的专业知识和技能为社会做出贡献。所以,可以说医疗健康集团不仅是我们健康的守护者,也是推动社会进步的重要力量。

第7张

这一项目具有深远的意义和价值。

首先,它将助力医疗健康行业迈向数字化转型的新阶段。我们知道,数字化转型已成为各行业提升服务水平和竞争力的关键。对于医疗健康行业来说,数字化转型将使其更加高效、精准,更好地服务于广大患者。

其次,通过建设数据湖及应用平台,我们将探索医疗健康数据的新型应用模式。这将为行业创新提供有力支撑,推动医疗健康行业的持续发展。

最后,这一项目的成功实施将成为医疗健康行业数字化转型的标杆和典范。它将引领行业未来发展方向,为其他行业提供有益的参考和借鉴。

因此,这一项目的建设意义与价值重大,我们期待它的成功实施能为医疗健康行业带来更加美好的明天。

第8张

下面介绍总体架构设计与技术选型。

第9张

想象一下,数据湖就像一个大型的中央水库,专门用来存储和处理医疗健康数据。这不仅仅是数据的存储地,更是一个能够整合、处理和分析多源异构数据的强大平台。它的功能定位非常明确,旨在提供数据存储、处理、分析和共享等服务,为医疗健康集团的数据驱动业务创新和转型升级提供强大支持。简而言之,数据湖就像医疗健康集团的智慧大脑,助力我们在数据的海洋中挖掘出无限的价值。

第10张

这个方案中的应用平台架构,它是基于微服务架构设计的,也就是说,我们把整个系统分成了多个小块,每个小块都是独立的,可以单独进行开发和部署。这种分层设计,包括数据接入层、数据处理层、数据分析层、应用服务层和展示层,使得我们的系统更加清晰、易于维护。

这个应用平台架构的特点呢,可以用四个字来形容:高、快、灵、安。首先,它是高可扩展的,也就是说,当我们的数据量或者用户数增加时,我们可以轻松地扩展系统,保证系统的稳定运行。其次,它是高可用的,即使在出现故障时,也能保证服务的连续性。再者,它是高并发的,可以处理大量的并发请求,保证用户体验。最后,它是安全的,我们有严格的安全措施,保护用户的数据安全。

这个架构还支持快速开发、灵活部署和持续迭代。也就是说,我们可以快速地开发新的功能,灵活地部署到生产环境,还可以持续地对系统进行优化和升级。

总的来说,这个医疗健康集团的数据湖及应用平台建设方案,是一个高效、稳定、可扩展的系统架构,它能够为我们的医疗健康事业提供强大的技术支撑。

第11张

首先,针对海量的数据存储需求,我们采用了分布式文件系统和大数据存储技术,不仅保证了数据的可靠性,还实现了可扩展性,让数据湖更加健壮。而在数据处理方面,我们选择了大数据处理框架和机器学习算法库,实现数据的实时处理、批量处理和智能分析,为数据湖注入了活力。当然,应用开发技术也同样重要。我们采用了Java、Python等主流开发语言,结合Spring Cloud等微服务开发框架,让开发更加高效,系统更加稳定。这些技术选型,都是基于它们的成熟性、稳定性、扩展性和生态丰富性等因素进行综合考虑的,确保我们的医疗健康集团数据湖及应用平台能够顺利建设,满足集团的业务需求。

第12张

首先,我们必须确保数据的安全。我们会采用先进的数据加密技术,保证数据在传输、存储和处理过程中不被泄露或篡改。同时,我们还会实施严格的访问控制和安全审计,确保只有授权人员能够访问数据,并实时监控和记录数据的访问和使用情况。此外,我们还将建立完善的安全管理制度和应急响应机制,以应对可能出现的安全事件。

在保障系统稳定性方面,我们将采用高可用的架构设计,确保系统没有单点故障,任何时候都能正常运行。同时,我们还会运用负载均衡和容错处理等技术手段,提高系统的并发处理能力和容错能力。此外,我们还将建立完善的监控和运维体系,实时监控系统的运行状态和性能指标,确保系统始终运行在最佳状态。

总的来说,我们将通过全面的安全性和稳定性保障措施,确保医疗健康集团数据湖及应用平台的安全、稳定运行,为医疗健康事业的发展提供有力支撑。

第13张

下面介绍数据治理与存储策略制定。

第14张

在医疗健康集团数据湖及应用平台建设方案中,数据来源识别及接入方式选择是关键环节。首先,我们需要从多个源头识别并汇总数据,包括医疗业务系统、医疗设备、健康管理应用等,以确保数据的全面性和准确性。其次,在选择接入方式时,我们需要根据数据的实时性和数据量大小等因素进行综合考虑,选择最适合的接入方式,如批量导入或实时流处理等,以确保数据的及时性和高效性。只有做好数据来源识别和接入方式选择,才能为后续的数据分析、挖掘和应用提供可靠的基础。

第15张

首先,我们需要进行数据清洗,去除那些重复、错误、不完整的数据,确保我们的数据质量。接下来,我们需要进行数据整合,把来自不同来源、不同格式的数据整合在一起,形成一个统一的数据视图。最后,我们需要制定数据标准化规范,对数据进行标准化处理,这样可以更方便地进行后续的数据分析和应用。通过这一系列的处理,我们可以确保数据的准确性、完整性和一致性,为医疗健康集团的决策和业务发展提供有力支持。

第16张

首先,我们要根据数据的访问频率和重要性等因素,将数据进行冷热划分。热数据是指那些经常被访问、使用频率高的数据,而冷数据则是指那些不常被访问、使用频率较低的数据。然后,我们要采用不同的存储介质和存储技术,对冷热数据进行分层存储。对于热数据,我们可以采用高性能的存储介质和技术,确保数据的快速访问和处理;而对于冷数据,我们可以采用成本较低的存储介质和技术,以节省存储成本。通过冷热数据分层存储,我们可以实现存储效率和成本效益的最大化,为医疗健康集团的数据湖及应用平台建设提供坚实的存储基础。

第17张

首先,我们需要制定明确的备份策略,这包括备份周期、备份方式以及备份数据的存储位置等关键要素。只有明确了这些策略,我们才能确保数据能够在需要时得到及时、准确的备份。其次,我们还需要建立数据恢复机制,以便在数据丢失或损坏时能够迅速恢复,从而保障业务的连续性。此外,为了确保备份数据在关键时刻能够真正派上用场,我们还需要定期对备份数据进行验证和演练,确保其可用性和完整性。这样一来,我们就能够为医疗健康集团数据湖及应用平台提供坚实的数据保障,确保其稳定、高效地运行。

第18张

下面介绍智能分析与应用场景构建。

第19张

首先,我们要对集团的业务需求进行全面的梳理。这意味着我们要深入了解临床、科研、管理等多个方面的需求,明确数据湖建设的方向和重点。只有这样,我们才能确保数据湖能够真正满足集团的实际需求,为集团的发展提供有力的支持。

接下来,我们要根据梳理出的业务需求,将数据湖的应用场景进行划分。这些场景可能包括患者管理、疾病管理、医疗资源管理、医疗质量管理等等。通过对这些场景的划分,我们可以为后续的智能化分析提供基础,进一步提高数据湖的应用价值。

所以,各位同仁,我们需要在全面梳理业务需求的基础上,合理划分数据湖的应用场景。只有这样,我们才能确保数据湖建设得更加精准、高效,为医疗健康集团的未来发展提供强大的支持。

第20张

要构建高效的智能化分析模型,首先我们需要对原始数据进行清洗、整合、转换等预处理操作,以提高数据质量和可用性。接着,通过特征选择、特征构造等方法,我们需要提取出对分析目标有重要影响的特征,为后续的模型训练和优化打下基础。在选择模型时,我们需要根据分析目标和数据特征,选择合适的机器学习或深度学习模型进行训练和优化。最后,在模型评估与调优阶段,我们可以通过交叉验证、A/B测试等方法对模型进行评估,根据评估结果对模型进行调优和改进,以提升模型的预测精度和稳定性。通过这些步骤,我们可以构建出高效、准确的智能化分析模型,为医疗健康集团的决策支持提供有力的数据支撑。

第21张

在这个方案中,我们有一个核心目标,那就是实现跨业务、跨部门的融合应用场景设计。

首先,我们来谈谈跨部门数据共享。在过去,各部门间的数据往往是孤立的,形成了数据壁垒。但在这个方案中,我们要打破这些壁垒,让数据在各部门间自由流通和共享,从而提高数据的利用效率。

接下来,是业务协同应用场景设计。我们希望通过设计跨业务、跨部门的应用场景,如临床与科研协同、医疗与管理协同等,来推动各业务间的协同合作,实现一加一大于二的效果。

最后,我想谈谈数据驱动决策支持。我们不仅要收集数据,更要利用数据。基于数据湖中的数据和分析结果,我们将为集团管理层提供决策支持,帮助他们在做出决策时更加科学和准确。

总的来说,这个方案旨在打破部门壁垒,推动业务协同,利用数据驱动决策,从而提升整个医疗健康集团的运营效率和决策水平。

第22张

首先,我们致力于探索互联网技术与医疗健康服务的深度融合,创新服务模式,提升服务效率和质量。通过搭建互联网平台,我们将能够为广大患者提供更为便捷、高效的医疗服务,改善他们的就医体验。

其次,我们将充分利用大数据技术,深度挖掘患者数据,实现精准医疗和个性化治疗。通过对数据的分析,我们可以为患者提供更为精准的治疗方案,提高治疗效果,增强患者满意度。

最后,我们将以数据湖为核心,构建医疗健康产业生态。通过整合各方资源,促进产业协同发展和创新,共同推动医疗健康产业的繁荣与进步。

总之,我们的目标是打造一个高效、便捷、精准的医疗健康服务平台,为广大患者提供优质的医疗服务,推动医疗健康产业的持续发展。

第23张

下面介绍平台服务能力与共享机制建设。

第24张

首先,我们需要评估现有数据湖及应用平台的服务能力。这就像我们定期体检,要检查身体的各个部分是否都正常运作。我们要看的是数据存储、处理、分析和可视化等方面的能力是否达标。

接着,我们要找出服务能力的瓶颈,就像医生诊断病症一样,要找到问题的根源。然后,提出针对性的提升方案。比如说,优化数据存储结构,让数据存取更加高效;提高数据处理效率,让数据分析更加迅速;增强数据分析能力,挖掘出数据背后的更多价值。

当然,提升服务能力并非一蹴而就,需要探讨的途径有很多。比如,我们可以进行技术升级,引进更先进的技术和设备;人才引进,吸引更多有才华的人才加入我们的团队;合作伙伴拓展,与更多的企业和机构建立合作关系,共同推动医疗健康领域的发展。

这就是医疗健康集团数据湖及应用平台建设方案的一些核心内容。我相信,只要我们齐心协力,我们一定能够建设出更加高效、智能的数据湖及应用平台,为医疗健康领域的发展做出更大的贡献!

第25张

亲爱的朋友们,接下来我将和大家分享医疗健康集团数据湖及应用平台建设方案中关于集团内部资源共享机制设计的部分内容。首先,我们要明确资源共享的范围、方式和责任主体,通过科学合理的设计,确保资源能够高效、有序地在集团内部流动。其次,我们要建立统一的资源目录和管理平台,通过这一平台,我们可以对资源进行统一的管理和调度,实现资源的最大化利用。最后,我们还要制定资源共享的标准和规范,确保资源的质量和安全性,让每一位员工都能放心地使用这些资源。通过这样的机制设计,我们相信能够推动医疗健康集团的持续发展和创新。

第26张

为了充分发挥其作用,我们需要精心制定外部合作伙伴的接入和共享策略。首先,我们要深入了解和分析合作伙伴的需求和资源优势,确保我们的策略能够充分发挥这些优势。同时,为了确保合作伙伴的质量和信誉,我们需要建立评估和筛选机制,从众多潜在伙伴中挑选出最合适的。最后,为了实现与外部系统的顺畅互联,我们还需要制定统一的技术标准和接口规范,确保数据和信息能够高效、安全地流通。这样,我们才能构建一个真正高效、可靠、安全的医疗健康数据湖及应用平台,为提升医疗服务质量和效率做出更大的贡献。

第27张

因此,我们必须建立一套完善、持续的运营和维护保障体系。这个体系不仅要确保平台的稳定运行,还要能够在出现问题时迅速应对,以最小的代价恢复平台的可用性。具体来说,我们首先要制定一份详尽的运营和维护计划,这包括日常的巡检、故障的及时处理,以及性能的持续优化等多个方面。其次,为了进一步提高平台的稳定性,我们还需建立有效的监控和预警机制。这样,任何潜在的问题都能在第一时间被发现和解决,确保平台始终在最佳状态下运行。总之,持续运营和维护保障是平台建设不可或缺的一部分,我们必须给予足够的重视,确保医疗健康集团数据湖及应用平台能够长期稳定、高效地服务于广大用户。

第28张

下面介绍智慧化决策支持体系打造。

第29张

为了更好地服务于患者和管理医疗资源,我们将通过数据湖来整合医疗集团内部各业务系统的数据,包括患者信息、医疗资源、运营数据等,从而实现全面、实时的数据监测。在此基础上,我们将利用历史数据和机器学习算法,构建预警预测模型,对关键指标进行实时监测和趋势分析,及时发现潜在风险。最后,我们会通过图表、仪表盘等可视化工具,将监测数据和预警信息直观地展示出来,帮助管理者快速了解当前状况并作出决策。这样一来,我们的医疗健康集团就能够更好地为患者服务,提高医疗资源的利用效率,实现可持续发展。

第30张

想象一下,数据仓库就像是一个大型的数据加工厂,它会把从数据湖中收集到的原始数据进行清洗、整合、转换和加载,让数据变得更加规范化和易于分析。这就像是把一堆杂乱的石头加工成精美的雕塑,让人一目了然。

接下来,我们要构建各种分析模型。这些模型就像是医疗集团的“智慧眼睛”,能够帮助我们深入了解医疗集团的各个方面,如患者情况、资源分配和运营状况等。这些模型能够为我们的决策提供有力的数据支持,让我们更加明确方向和目标。

最后,我们要基于这些分析模型和数据仓库,构建一个决策支持系统。这个系统就像是医疗集团的“智慧大脑”,能够提供多维度的数据分析、趋势预测和模拟优化等功能。它能够帮助管理者做出更加科学、合理的决策,为医疗集团的发展保驾护航。

所以,简单来说,我们就是通过构建数据仓库、分析模型和决策支持系统,来打造一个能够为医疗集团提供有力数据支持和科学决策的辅助系统。这样,我们就能够更好地服务于患者,提升医疗水平,为人民的健康福祉做出更大的贡献。

第31张

各位听众,接下来我将为大家介绍一下医疗健康集团数据湖及应用平台建设方案中的智慧化决策流程和工具选择。

首先,我们要对传统的决策流程进行优化。通过引入数据分析和智能决策等环节,我们能够使决策过程更加科学、高效。想象一下,当医生们不再仅仅依赖经验,而是结合大量的数据分析结果来做决策,那么治疗效果和诊断准确率无疑会大大提升。

其次,选择合适的工具是关键。根据医疗集团的实际需求,我们需要选择如数据挖掘工具、预测分析工具、优化算法等智能工具。这些工具能够帮助我们深入挖掘数据价值,为决策提供有力支持。

最后,整合不同的决策支持系统是必不可少的。通过实现数据共享和功能互补,我们可以提高整体决策效果,让医疗健康集团的发展更加稳健、高效。

在这个数据驱动的时代,智慧化决策已经成为我们不可或缺的一部分。希望以上介绍能够让大家对医疗健康集团数据湖及应用平台的建设方案有更深入的了解。

第32张

首先,我们要关注数据质量提升,持续努力确保数据的准确性和完整性。这是因为只有高质量的数据才能为智慧化决策提供可靠的依据。其次,我们要重视算法优化,不断改进数据分析算法和智能决策算法,以提高分析的准确性和预测的精度。这样才能确保我们的决策更加科学和精准。最后,我们还要关注系统升级,根据医疗集团的业务发展和需求变化,持续对智慧化决策支持系统进行升级和改进。这样才能保持系统的先进性和适用性,满足集团日益增长的需求。通过这些措施,我们将不断提升医疗健康集团的决策水平和运营效率,为患者和医疗事业提供更好的服务。

第33张

下面介绍项目实施计划与风险管理。

第34张

这个方案主要涉及两大块内容,一是数据湖的建设,二是应用平台的建设。

首先,数据湖建设是一个综合性的工作,它涉及到数据的集成、存储和处理等多个环节。在具体实施步骤上,我们需要先进行需求调研,了解清楚各个部门和业务对数据的需求;然后进行架构设计,搭建好整个数据湖的技术框架;接着进行环境搭建,为数据的存储和处理提供必要的硬件和软件环境;最后进行数据迁移,将各个业务系统的数据整合到数据湖中。

接下来是应用平台的建设。基于已经建设好的数据湖,我们将构建医疗健康应用平台,这个平台将涵盖数据可视化、数据分析、业务应用等多个模块。通过这个平台,我们可以更加直观地了解和分析医疗健康数据,为决策提供有力的支持。

当然,方案的实施离不开合理的时间节点安排。我们将明确各个阶段的关键时间点,包括项目的启动、需求调研、设计开发、测试验收和上线发布等,确保整个项目能够按计划顺利进行。

总之,这个方案旨在通过数据湖和应用平台的建设,提高医疗健康数据的整合和利用效率,为医疗健康事业的发展提供有力支撑。

第35张

这就像是在做饭前,我们需要先盘点一下厨房里有哪些食材和工具,这样才能确保我们的饭菜能够顺利制作完成。只有明确了我们手上的资源有多少,才能合理安排项目的实施进度。

当然,任何项目在实施过程中都可能会遇到一些不可预见的挑战,比如资源短缺或者一些其他的风险。所以,我们还需要提前制定好相应的保障措施。这就像是在做饭时,如果发现某个食材不够了,我们可以考虑用其他的食材来替代,或者调整菜谱,确保最后的饭菜仍然能够美味可口。在项目执行过程中,如果遇到了资源短缺或者其他风险,我们也可以通过增加人员投入、优化资源配置等方式来应对,确保项目能够顺利完成。

总之,对资源需求进行全面评估,并制定相应的保障措施,是确保医疗健康集团数据湖及应用平台建设项目顺利推进的关键步骤。我们将始终以用户需求为出发点,全力以赴推进项目建设,为广大用户提供更加优质、高效的医疗健康服务。

第36张

首先,我们要进行全面的风险识别,仔细分析项目实施过程中可能出现的各种风险,如技术风险、数据安全风险、项目管理风险等。其次,我们要对识别出的风险进行详细的评估,确定它们的风险等级和影响程度,这样我们才能更好地制定应对方案。最后,针对不同类型的风险,我们要制定相应的应对方案,包括风险规避、风险转移、风险减轻等策略,以确保项目的顺利实施和成功完成。这样,我们才能最大程度地保障项目的安全、稳定和可靠,为医疗健康事业的健康发展提供坚实的支撑。

第37张

首先,需求分析的准确性是至关重要的。我们必须要深入了解实际需求,准确理解用户需求背后的真实意图,避免因为需求理解偏差导致项目失败。其次,技术可行性也是我们不能忽视的一点。我们需要对项目所采用的技术方案进行充分的论证和评估,确保技术方案的可行性和稳定性,避免因为技术难题导致项目延期或失败。同时,团队协作与沟通也是项目成功的关键。我们需要建立高效的团队协作机制和沟通渠道,让团队成员能够紧密合作、互相理解、及时反馈,以确保项目的顺利进行。最后,项目管理的规范性也是必不可少的。我们需要确保项目管理的规范性和严谨性,避免出现管理漏洞或风险,保证项目的顺利完成。这些成功因素是相互关联的,共同构成了我们建设医疗健康集团数据湖及应用平台的基石。

第38张

今天的分享就到这里,谢谢大家!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号:优享智库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值