本文围绕华为数据治理展开,先阐述数字化转型对数据治理的要求,引出数据治理的定义和内涵,介绍华为已建成国际领先水平的数据管理体系及 15 年的数据工作历程和整体蓝图 。接着详细说明数据治理体系,包括建立公司级数据治理政策、管理流程、管理组织和管控机制。信息架构作为企业架构的重要部分,是连接业务与 IT 架构的桥梁,涵盖数据资产目录等四个组件,具有多方面价值。数据底座建设旨在管理数据资产、监控数据环节、满足数据消费需求并保障数据安全,其框架包含多个部分,数据湖有独特特点,还涉及数据主题联接和数据服务等内容。数据质量管理至关重要,华为构建了相关框架,通过度量运作机制、发布报告等方式提升数据质量。数据安全治理与传统 IT 安全不同,有其特定目标、成熟度评估模型和防护措施。最后对华为数据治理工作进行思考总结,涵盖不同阶段成果、政策、管理层次、数据分类、质量提升措施、安全治理等级和保障要素等内容 。
1. 数据治理概述
1.1 数据治理的重要性
- 数据是企业核心资产,数据治理是数字化转型的基础。华为通过数据治理,实现数据的高质量、安全与合规,支撑业务发展。
- 数据治理确保数据源头质量,形成清洁、完整、一致的数据湖,为业务提供可信数据支持。
1.2 数据治理的定义
- 数据治理是数据资源及其应用过程中相关管控活动、绩效和风险管理的集合,保证数据资产的高质量、安全及持续改进。
- 数据治理通过建立数据管理体系,统一信息架构与标准,形成数据质量度量机制,实现企业数据全流程贯通和数据价值应用。
2. 数据治理体系
2.1 数据治理政策
- 数据管理总纲:明确数据是公司核心资产,数据准确是有效内控的基础,规定信息架构、数据产生、数据应用、数据问责与奖惩的基本原则。
- 信息架构管理政策:信息架构是公司统一的数据语言,是业务流打通、消除信息孤岛和提升业务流集成效率的关键要素。
- 数据源管理政策:确保数据源头的统一,以及跨流程、跨系统数据的唯一性和一致性。
- 数据质量管理政策:明确数据在创建、维护及应用过程中的规则及质量要求。
2.2 数据管理流程
- 管理业务变革与信息技术(MBT&IT):聚焦数据资产建设和治理,识别和定位数据质量问题、实施根因分析。
- 管理数据:组织制定数据质量标准和数据质量监控计划,定义和制定数据质量评估指标,实施测评和报告。
- 管理数据分析:业务模型开发,数据分析和挖掘,管理信息架构,管理数据质量。
2.3 数据管理组织
- 集中式管理:设立专门组织管理企业数据治理工作,管理力度大,驱动力强。
- 联邦式管理:设立专门组织作为数据治理的日常管理部门,牵头负责数据治理各环节的协调和组织工作。
- 分布式管理:不设立专门组织,各业务单元负责本业务领域的数据治理工作。
3. 信息架构
3.1 信息架构的定义
- 信息架构是以结构化的方式描述在业务运作和管理决策中所需要的各类数据及其关系的一套整体组件规范。
- 信息架构包括数据资产目录、数据标准、数据模型和数据分布四个组件。
3.2 信息架构的价值
- 发布业务术语及数据标准,避免同名不同义或者同义不同名,提高沟通效率。
- 从数据视角识别业务流断点,发现业务改进机会点。
- 厘清数据资产,是实现企业数据资产业务价值的前提。
- 以稳定的架构快速响应业务灵活多变的消费需求。
3.3 信息架构的组件
- 数据资产目录:识别数据的“来龙去脉”,定位数据问题。
- 数据标准:统一语言,消除歧义,为数据资产梳理提供标准的业务含义和规则。
- 数据模型:通过E-R建模实现对数据及其关系的描述,指导IT开发。
- 数据分布:通过分层架构表达对数据的分类和定义,厘清数据资产。
4. 数据底座
4.1 数据底座建设目标
- 数据资产管理:将数据视为资产,能够追溯数据的产生者、业务源头以及数据的需求方和消费者等。
- 数据安全与合规:基于数据安全管理策略,利用数据权限控制,实现对涉密数据和隐私数据的合法、合规地消费。
- 数据质量监控:监控数据全链路下的各个环节的数据情况,诊断数据冗余、重复以及“僵尸”问题,降低数据维护和使用成本。
- 数据服务化:为数据消费提供丰富的数据原材料、半成品以及成品,满足公司自助分析、数字化运营等不同场景的数据消费需求。
4.2 数据底座建设框架
- 数据湖:整合结构化、半结构化、非结构化数据,支持批量、实时、交换等多种入湖方式。
- 数据服务:面向“自助消费”,提供多维模型、图模型、智能标签、指标数据等服务。
- IT平台:全流程丰富数据平台组件,包括数据标准、数据集成、数据开发、数据质量、元数据管理等。
5. 数据质量管理
5.1 数据质量的重要性
- 数据质量是数据满足应用的可信程度,直接影响业务决策的准确性。
- 通过数据质量度量、监控和改进,提升数据的唯一性、完整性、及时性、有效性、准确性和一致性。
5.2 数据质量管理框架
- 数据质量政策:明确数据质量管理的基本原则和要求,指导数据质量管理工作开展。
- 数据质量管控:从战略到执行的专业管控,第三方的数据质量审计,ITGC关键控制点保障IT系统数据满足质量要求。
- 数据质量文化:提升数据质量意识,助推数据质量责任融入工作。
5.3 数据质量度量与改进
- 度量运作机制:识别度量对象、确定度量指标、实施质量度量、改进质量问题。
- 度量报告:发布度量报告,展示总体得分及趋势、领域得分分布、关键数据质量问题及解决方案。
- 能力保障:加强数据质量能力保障,包括人员、规则、技术等方面的建设。
6. 数据安全管理
6.1 数据安全治理的目标
- 以数据的安全使用为目标,满足信息安全要求、可信要求和数字化转型需要。
- 遵守法律法规,如GDPR、网络安全法等,保障数据的合法合规使用。
6.2 数据安全治理成熟度评估模型(DSMM)
- 从组织实践、流程、方法、水平的能力维度进行衡量,设置提升目标的优先级。
- 包括五个等级:非正式执行、计划跟踪、充分定义、量化控制、持续优化。
6.3 数据安全防护措施
- 数据加密:对敏感个人数据和绝密资产进行加密处理。
- 数据脱敏:对数据进行脱敏处理,保护个人隐私。
- 访问控制:控制个人权限,防止非业务人员访问数据。
- 数据水印:在数据中增加伪列、伪行等手段,跟踪数据泄漏源头。
- 安全审计:基于日志等级数提供安全事件中事后追溯、定位问题原因及划分事故责任的重要手段。
一、 数字化建设方案WORD格式
1、企业数字化建设
企业数字化建设是指将传统企业的业务、流程、管理等方面通过信息技术的应用进行改造和升级,实现数字化管理和运营。其目的是提升企业的运营效率、降低成本、提高竞争力,并为企业未来的发展打下坚实的基础。企业数字化建设涵盖了多个方面,包括但不限于业务数字化、组织变革、系统建设等。其中,业务数字化是关键环节,通过信息化技术实现业务流程的自动化、信息化和智能化,从而提高企业的效率和竞争力。
2、数据中台
数据中台是对既有/新建信息化系统业务与数据的沉淀,是实现数据赋能新业务、新应用的中间、支撑性平台。在政企数字化转型过程中,数据中台构建包括数据技术、数据治理、数据运营等数据建设、管理、使用体系,实现数据赋能。它是新型信息化应用框架体系中的核心,广泛应用于政企行业大数据采集、治理、分析挖掘、指标应用等领域。通过数据中台,企业可以更好地整合和利用数据资源,为业务发展提供有力支持。
3、数据治理
数据治理是组织中涉及数据使用的一整套管理行为,旨在提升数据的价值,确保数据资产得到正确有效的管理。数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,形成了一个闭环负反馈系统。数据治理过程包括发现、监督、控制、沟通、整合等执行力,以实现对数据的获取、处理、使用的监管。数据治理是企业实现数字战略的基础,有助于提升企业的决策效率和业务创新能力。
4、数据湖
数据湖是一个大的存储站,具有分布式可无限扩展的特点,用于存储各种类型的数据,不进行清洗和加工,尽量保持原样。数据湖提供标准的开放接口,如查询SQL类接口、计算引擎接口、流处理接口等,方便用户使用存储的数据。数据湖的存储一般采用分布式对象存储或分布式文件存储,即使是从结构化数据库采集过来的数据,也会转成统一的存储方法,方便扩展。数据湖更多对应到数据中台概念里面的数据贴源层,为企业提供了灵活、高效的数据存储和访问方式。
二、数字化建设方案PPT格式
三、三、 数字化建设方案PDF格式
- 1.