1. 最近英伟达召开的面向开发者的2024年全球人工智能(GTC)大会可谓是赚足了眼球,其中发布了地表最强芯片—B200,推出了面向人工智能模型的新一代Blackwell GPU架构,以及基于此架构的新一代AI加速卡—GB200,这是一款“巨大的超级芯片”,将两个英伟达B200 Tensor Core GPU连接到英伟达Grace CPU上。除此之外,英伟达还发布了“Jetson Thor”平台,这是一款用于人形机器人的新型计算机,具有AI功能,是其人工智能驱动机器人计划的一部分。(ps:看到机器人的模样有没有想到电影《机器人总动员》里面的瓦力。)
GB200 =两个GPU+1个CPU+电路板
2. 借次机会记录一下之前学习过Jetson平台在上面安装过Pytorch的AI框架,以及基于目标物体检测的Yolov5应用。本例以Jetson AGX Orin Jetpack5.1.2为例搭建cuda环境,TensorRT等。
3.首先安装了Jetpack的os中都会在/etc/apt/sourch.list.d/中带有nvidia-l4t-apt-source.list文件,里面包含了需要安装基础环境的源路径,不用在单独去下载cuda,cudnn,tensorRT安装包,而且单独下载经过测试存在兼容性问题。而且官方release的包大多是针对arm64-sbsa平台,不是适配Jetson平台,这里需要区分一下。
# SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and