本文提供了一个案例研究,展示了如何利用因果机器学习来做出更好的营销决策。
在商业世界中,了解因果关系至关重要。例如,在定价方面,了解客户在价格调整时如何改变购买行为非常重要。要确定营销活动是否值得继续,我们需要了解它是否真的对我们关心的 KPI 产生影响。
在解决这类问题时,理解因果关系似乎至关重要。但实际上,人们经常将因果关系与单纯的相关性混淆,这可能导致决策失误,代价高昂。让我们看一个例子来说明这一点。
混淆相关性和因果关系的代价高昂的错误
想象一下,一家冰淇淋店决定在夏季在当地报纸上做广告。投放广告后,店主发现销售额有所增加,并得出结论,广告活动取得了巨大成功。毕竟,与一年中其他时间相比,广告期间的销售额要高得多。因此,店主计划在报纸广告上投入更多资金。然而,店主没有意识到,无论有没有广告,冰淇淋的销量在夏季总是更高。此外,几乎没有人再读当地报纸了,所以广告并没有真正起到作用。从统计学的角度来看,店主混淆了相关性和因果关系。广告活动与更高的销售额相关,因为它是在夏季进行的。但它实际上并没有导致销售额增加。这种混淆导致店主做出昂贵的决定,继续投放广告活动。虽然这只是一个程式化的例子,但它强调了在制定商业决策时,理解因果关系并不要将其与简单的相关性混淆是多么重要。
A/B 测试并不总是可行的
在数据科学和商业领域,一种常用的估计因果关系的方法是进行 A/B 测试。A/B 测试的传统可以追溯到许多世纪以前,起源于医学。A/B 测试的其他术语包括实验、随机对照试验 (RCT) 和拆分测试。A/B 测试背后的基本概念是将观察单位(例如客户)随机分配到两个不同的组中。一组称为实验组,接受特定的干预或治疗,例如营销电子邮件。另一组称为对照组,不接受任何治疗。通过将实验组与对照组进行比较,我们可以确定由于随机分配,干预对感兴趣的 KPI 的因果影响。
然而,尽管 A/B 测试在许多情况下都是一种有价值的工具,但在现实场景中并不总是可行的。例如,一家公司可能不建议将其营销预算随机分配到各个市场以测试其营销策略的有效性。除了 A/B 测试成本过高或风险过大的情况外,还存在 A/B 测试耗时过长而无法获得可操作的见解甚至因道德考虑而被法律禁止的情况。
因果机器学习从自然收集的数据中学习
在这种情况下,因果机器