Dsh010 python基础编程--函数(下)

1、高阶函数

1.1 高阶函数简介

  • 接收一个或多个函数作为参数,或者将函数作为返回值返回的函数就是⾼阶函数
  • 当使用一个函数作为参数的时候,实际上是将指定的代码传递到了目标函数

ex1:将指定列表中的偶数提取出来,形成一个新的列表

lst = [1,2,3,4,5,6,7,8,9,10]
def fn(L):
    # 参数L是被指定的列表
    new_lst = []
    for n in L:
        if n % 2 == 0:
            new_lst.append(n)
    return new_lst
print(fn(lst))         # 输出结果为:[2, 4, 6, 8, 10]

ex2:根据用户需求解函数值

lst = [1,2,3,4,5,6,7,8,9,10]
def fn2(i):
    if i % 2 == 0:      # 求偶数
        return True
def fn3(i):
    if i > 5:           # 求大于5的数
        return True
    return False
def fn(func,L):    # 参数L是被指定的列表
    new_lst = []
    for n in L:
        if func(n):
            new_lst.append(n)
    return new_lst
print(fn(fn2,lst))   # 输出结果为:[2, 4, 6, 8, 10]
print(fn(fn3,lst))   # 输出结果为:[6, 7, 8, 9, 10]

1.2 匿名函数

  • filter()一个高阶函数,需要将别的函数作为参数来传递
  • 可以将可迭代对象进行过滤
  • 返回值是可迭代对象
lst = [1,2,3,4,5,6,7,8,9,10]
def fn4(i):
    if i % 3 ==0:
        return True
    return False
print(filter(fn4,lst))        # 输出结果为: <filter object at 0x000001E19A1989B0>
print(list(filter(fn4,lst)))   # 输出结果为:[3, 6, 9]
  • 匿名函数,lambda表达式
  • lambda表达式专门用来创建一些简单的函数(单一函数),也是函数的另一种创建方式
  • 语法:lambda 参数列表:返回值
def fn5(a,b):
    return a + b
print(fn5(1,2))           # 输出结果为:3
print((lambda a,b:a + b)(10,50))  # 输出结果为:60
  • 将匿名函数赋值给一个变量
fn6 = (lambda a,b : a + b)(6,7)
print(fn6)    # 输出结果为:13
fn6 = lambda a,b : a + b
print(fn6(5,6))      # 输出结果为:11
  • 匿名函数最大的好处就是它只会用一次,用完就会从内存中消失
lst = [1,2,3,4,5,6,7,8,9,10]
r = filter(lambda i:i % 3 == 0,lst)
print(list(r))       # 输出结果为:[3, 6, 9]

2、闭包

  • 高阶函数第二种,将函数作为参数返回,这种高阶函数称之为闭包
  • 闭包的好处
    • 通过闭包可以创建⼀些只有当前函数能访问的变量
    • 可以将⼀些私有数据藏到闭包中
def make_fn():
    nums = []
    def fn1(n):
        nums.append(n)
        return sum(nums)/len(nums)
    return fn1
mf = make_fn()
print(mf(10))    # 输出结果为:10.0
nums = []       # 对内部列表无影响
print(mf(20))     # 输出结果为:15.0
  • 形成闭包的条件
    • 函数嵌套
    • 将内部函数作为返回值返回 (高阶函数的必要条件之一)
    • 内部函数必须要使⽤到外部函数的变量

3、装饰器的引入

  • 我们可以直接通过修改函数中的代码来完成需求,但是会产⽣以下⼀些问题
    • 如果修改的函数多,修改起来会⽐较麻烦
    • 不⽅便后期的维护
    • 这样做会违反开闭原则(ocp) ,
      • 程序的设计,要求开放对程序的扩展,要关闭对程序的修改
  • 对函数进行扩展,可以通过装饰器来解决

4、装饰器的使用

  • 通过装饰器,可以在不修改原来函数的情况下来对函数进⾏扩展
  • 在开发中,我们都是通过装饰器来扩展函数的功能的
  • @函数名的方式来对其他的函数进行扩展
def fn():
    print('我是fn函数')
def start_end():
    def new_func():
        print('函数开始执行')
        fn()
        print('函数执行结束')
    return new_func
f = start_end()
f()           # 输出结果为:函数开始执行  我是fn函数  函数执行结束
def fn():
    print('我是fn函数')
def start_end(old):
    def new_func():
        print('函数开始执行')
        old()
        print('函数执行结束')
    return new_func
f = start_end(fn)
f()          # 输出结果为:函数开始执行  我是fn函数  函数执行结束
def fn():
    print('我是fn函数')
def start_end(old):
    # 内部创建了一个函数
    def new_function(*args,**kwargs):
        print('函数开始执行')
        r = old(*args,**kwargs)
        print('函数执行结束')
        # 返回函数的执行结果
        return r
    # 返回新的函数
    return new_function
f = start_end(fn)
r = f()
print(r)                  # 输出结果为:函数开始执行  我是fn函数  函数执行结束  None
def add(a,b):
    r = a + b
    return r
def start_end(old):
    # 内部创建了一个函数
    def new_function(*args,**kwargs):
        print('函数开始执行')
        r = old(*args,**kwargs)
        print('函数执行结束')
        # 返回函数的执行结果
        return r
    # 返回新的函数
    return new_function
f2 = start_end(add)
r = f2(13,46)
print(r)     # 输出结果为:函数开始执行  函数执行结束  59
  • 像类似于start_end(old)这种函数我们就称之为装饰器
  • 通过装饰器可以在不修改原来的函数的情况下对函数进行扩展
  • 在开发中,我们都是通过装饰器来扩展函数的功能的
def start_end(old):
    # 内部创建了一个函数
    def new_function(*args,**kwargs):
        print('函数开始执行')
        r = old(*args,**kwargs)
        print('函数执行结束')
        # 返回函数的执行结果
        return r
    # 返回新的函数
    return new_function
@start_end
def speak():
    print('同志们辛苦了!!!!')
speak()   # 输出结果为:函数开始执行  同志们辛苦了!!!!  函数执行结束
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值