【leetcode】-887. Super Egg Drop扔鸡蛋

给定一定数量的鸡蛋和楼层,确定找到鸡蛋摔碎楼层的最小尝试次数。问题涉及动态规划和二分搜索优化,通过不同思路的Python代码实现解决方案。
摘要由CSDN通过智能技术生成

题目

You are given K eggs, and you have access to a building with N floors from 1 to N.

Each egg is identical in function, and if an egg breaks, you cannot drop it again.

You know that there exists a floor F with 0 <= F <= N such that any egg dropped at a floor higher than F will break, and any egg dropped at or below floor F will not break.

Each move, you may take an egg (if you have an unbroken one) and drop it from any floor X (with 1 <= X <= N).

Your goal is to know with certainty what the value of F is.

What is the minimum number of moves that you need to know with certainty what F is, regardless of the initial value of F?

Example 1:

Input: K = 1, N = 2
Output: 2

Explanation:
Drop the egg from floor 1. If it breaks, we know with certainty that F = 0.
Otherwise, drop the egg from floor 2. If it breaks, we know with certainty that F = 1.
If it didn’t break, then we know with certainty F = 2.
Hence, we needed 2 moves in the worst case to know what F is with certainty.

Example 2:

Input: K = 2, N = 6
Output: 3
Example 3:

Input: K = 3, N = 14
Output: 4

思路

这题已经超出我的理解范围了,花了半个多小时才读懂题目意思,实在不容易。拾人牙慧,参考大神写的解题过程可能比较好理解。
[1]经典动态规划:高楼扔鸡蛋
[2]LeetCode:887. Super Egg Drop - Python

分别用两种不同的状态方程来表示的。

思路一

状态dp[k][n]:k 个鸡蛋,n 层楼找到 F的最少操作次数。

状态转移方程:max(dp(k-1,i-1)+1,dp(k,n-i)+1)

选择在第 i 层楼扔鸡蛋,之后,可能出现两种情况:鸡蛋碎了,鸡蛋没碎。
如果鸡蛋碎了,那么鸡蛋的个数 K 应该减一,剩下 k - 1 个鸡蛋,此时说明 F 在楼下(i 层的下面),接下来还要进行操作 dp[i-1][k-1] 次(子问题)。
如果鸡蛋没碎,那么鸡蛋的个数 K 不变,搜索的楼层区间应该变为 [i+1…N] 共 N-i 层楼。

python 代码

class Solution(object):
    def superEggDrop(self, K, N):
        """
        :type K: int
        :type N: int
        :rtype: int
        """
        memo = dict()
        def dp(k,n):
            if k == 1:
                return n
            if n == 0:
                return 0
            if (k,n) in memo: # 查找
                return memo[(k,n)]
            res = float("inf")
            for i in range(1,n+1):
                res = min(res,max(dp(k-1,i-1)+1,dp(k,n-i)+1))
            memo[(k,n)] = res # 记录
            return res
        
        return dp(K,N)

时间复杂度为O(K*N^2), 空间复杂度 O(KN)。
此时运行超时,可将线性搜索改进为二分搜索,参考1

二分改进

def superEggDrop(self, K: int, N: int) -> int:

    memo = dict()
    def dp(K, N):
        if K == 1: return N
        if N == 0: return 0
        if (K, N) in memo:
            return memo[(K, N)]

        res = float('INF')
        # 用二分搜索代替线性搜索
        lo, hi = 1, N
        while lo <= hi:
            mid = (lo + hi) // 2
            broken = dp(K - 1, mid - 1) # 碎
            not_broken = dp(K, N - mid) # 没碎
            # res = min(max(碎,没碎) + 1)
            if broken > not_broken:
                hi = mid - 1
                res = min(res, broken + 1)
            else:
                lo = mid + 1
                res = min(res, not_broken + 1)

        memo[(K, N)] = res
        return res

    return dp(K, N)

时间复杂度为 O(KNlogN), 空间复杂度为 O(KN)。

思路二

状态dp[m][k]:k 个鸡蛋, m次操作(扔m次),可以判定的最大楼层数是dp[m][k]。

状态转移方程:dp[m][k] = dp[m - 1][k] + dp[m - 1][k - 1] + 1

如果当前鸡蛋碎了, 此时能判断出的楼下的层数最少为 dp[m - 1][k - 1] 。
如果当前鸡蛋没碎,此时能判断出的楼上的层数最多为 dp[m - 1][ k ] 。

无论是上楼还是下楼,总的楼层数 = 楼上的楼层数 + 楼下的楼层数 + 1(当前这层楼),所以总体就是上面的方程式了。参考2

python代码

dp = [[0] * (K + 1) for i in range(N + 1)]
       for m in range(1, N + 1):
           for k in range(1, K + 1):
               dp[m][k] = dp[m - 1][k - 1] + dp[m - 1][k] + 1
           if dp[m][K] >= N:
               return m

状态压缩

dp = [0] * (K + 1)
        m = 0
        while dp[K] < N:
            for k in range(K, 0, -1):
                dp[k] = dp[k - 1] + dp[k] + 1
            m += 1
        return m
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值