【NOIP模拟】最大公约数

【题目描述】:
给出N个数,计算所有2^N子集(包括空子集)的GCD(子集所有数的gcd)的乘积。答案对1e9+7取模。
其中空子集的GCD为1。
【输入】:
第一行是1个整数N
接下来一行表示N个数
【输出】:
答案
【数据规模】
2<=N, a i a_{i} ai<=1e5

思路:

(最怕题面简单的题)
首先我们知道,不能枚举子集。所以,我们只能通过枚举gcd并计算其贡献。考场上脑子没有那么清醒,所以并没有想到怎么容斥。考场上我最后写了一个玄学做法,没想到思路居然对了。鉴于考虑gcd需要容斥,所以我们考虑每个素数对于答案的影响。对于一个素数p,我们可以这样计算它的贡献:找到所有含有因数p的数,设其个数为num,那么这些数的所有非空子集都能对答案产生p的贡献,总共能够产生 p 2 n u m − 1 p^{2^{num}-1} p2num1。但是有些数含有的p不止一个,所以我们将所有含p的数除以p,再统计一次贡献,直到所有数都不再含有p这个因数,然后处理下一个质数。由于质数之间不存在相互包含的关系,所以无需容斥。那么主要问题就在于怎么实现上述过程。如果我们直接对每个数进行除法,那么时间复杂度将会达到O(num(prime)nlog n)显然,这样的复杂度是没有办法接受的。上述过程的瓶颈在于每次都需要遍历每个数以找到含p的数,这样将会浪费大量时间。所以我们对每个数进行处理,将每个数质因数分解,对于每个素数的每一个数量建一个桶,对每个数进行统计。然后我们考虑计算对于每一个素数的贡献时,从含该素数数量最多的数开始处理,每次向低位累加,每次统计贡献。这样时间复杂度就只有O( n 3 2 + n u m ( p r i m e ) ∗ l o g n n^{\frac{3}{2}}+num(prime)*logn n23+num(prime)logn)。
小细节:计算贡献时,对 p 2 n u m − 1 p^{2^{num}-1} p2num1的指数 2 n u m − 1 2^{num}-1 2num1取模时不能对mod取模,而需要对mod-1取模(根据费马小定理)。考场上就是因为这个问题WA了。
参考代码:

#include<bits/stdc++.h>
#define re register
using namespace std;
int n,m,c;
const int mod=1e9+7;
const int N=1e5+5;
inline int red()
{
    int data=0;int w=1; char ch=0;
    ch=getchar();
    while(ch!='-' && (ch<'0' || ch>'9')) ch=getchar();
    if(ch=='-') w=-1,ch=getchar();
    while(ch>='0' && ch<='9') data=(data<<3)+(data<<1)+ch-'0',ch=getchar();
    return data*w;
}
int num[N];
bool vis[N];
int a[N],b,top=0;
long long ans=1;
int pos[N];
inline void get_su()
{
	for(int re i=2;i<=100000;i++)
	{
		if(vis[i])continue;a[++top]=i,pos[i]=top;
		for(int re j=2;1ll*j*i<=100000;j++)
			vis[j*i]=1;
	}
}
int sum[10001][20];
inline long long qpow(long long x,int b)
{
	long long ret=1;
	while(b)
	{
		if(b&1)ret*=x,ret%=mod;
		x*=x;x%=mod;
		b>>=1;
	}
	return ret;
}
inline long long qpow2(long long x,int b)
{
	long long ret=1;
	while(b)
	{
		if(b&1)ret*=x,ret%=(mod-1);
		x*=x;x%=(mod-1);
		b>>=1;
	}
	return ret;
}
int main()
{
	get_su();n=red();
	for(int re i=1;i<=n;i++)
	{
		b=red();int k=sqrt(b);
		for(int re j=2;j<=k;j++)
		{
			if(b%j==0)
			{
				int all=0;
				while(b%j==0)
				{
					b/=j;
					++all;
				}
				sum[pos[j]][all]++;
				k=sqrt(b);
			}
		}
		if(b>1)sum[pos[b]][1]++;
	}
	long long an=1;
	for(int re i=1;i<=top;i++)
	{
		int all=0;ans=0;
		for(int re j=18;j>=1;j--)
		{
			all+=sum[i][j];
			ans+=(qpow2(2ll,all)-1);           
			ans%=(mod-1);
		}
		an*=qpow(a[i],ans);
		an%=mod;
	}
	printf("%lld",an);
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值