如图,大圆⊙(O;R),小圆⊙(O’;r),
小圆沿着大圆内边滚动,保持相切,推导小圆上一特定点p的轨迹参数方程。
p’点坐标
(
x
,
y
)
(x,y)
(x,y)表示为:
{
x
=
(
R
−
r
)
cos
α
+
r
cos
θ
y
=
(
R
−
r
)
sin
α
−
r
sin
θ
\begin{cases} x=(R-r)\cos\alpha + r\cos\theta \\ y=(R-r)\sin\alpha - r\sin\theta \end{cases}
{x=(R−r)cosα+rcosθy=(R−r)sinα−rsinθ
其中,
θ
,
α
≥
0
\theta,\alpha\ge0
θ,α≥0,由滚动时的路程关系得:
(
α
+
θ
)
r
=
α
R
(\alpha+\theta)r=\alpha R
(α+θ)r=αR
代入上式得:
{
x
=
(
R
−
r
)
cos
α
+
r
cos
R
−
r
r
α
y
=
(
R
−
r
)
sin
α
−
r
sin
R
−
r
r
α
\begin{cases} x=(R-r)\cos\alpha + r\cos\dfrac{R-r}{r}\alpha\\ y=(R-r)\sin\alpha - r\sin\dfrac{R-r}{r}\alpha \end{cases}
⎩
⎨
⎧x=(R−r)cosα+rcosrR−rαy=(R−r)sinα−rsinrR−rα
此即p点轨迹的参数方程。
当
R
r
=
4
\cfrac{R}{r}=4
rR=4 时,
{
x
=
3
R
4
cos
α
+
R
4
cos
3
α
=
R
cos
3
α
y
=
3
R
4
sin
α
−
R
4
sin
3
α
=
R
sin
3
α
\begin{cases} x=\cfrac{3R}{4}\cos\alpha + \dfrac{R}{4}\cos3\alpha &=R\cos^3\alpha\\ y=\cfrac{3R}{4}\sin\alpha - \dfrac{R}{4}\sin3\alpha &=R\sin^3\alpha \end{cases}
⎩
⎨
⎧x=43Rcosα+4Rcos3αy=43Rsinα−4Rsin3α=Rcos3α=Rsin3α
即为星形线,或称为四尖瓣线,是一个有四个尖点的内摆线
直角坐标方程是:
x
2
/
3
+
y
2
/
3
=
R
2
/
3
x^{2/3}+y^{2/3}=R^{2/3}
x2/3+y2/3=R2/3
性质: 若星形线上某一点(参数
α
=
α
0
\alpha=\alpha_0
α=α0处)切线为
L
(
x
,
y
)
L(x,y)
L(x,y),其方向向量为
(
d
x
d
α
,
d
y
d
α
)
∣
α
=
α
0
(\cfrac{dx}{d\alpha},\cfrac{dy}{d\alpha})\bigg|_{\alpha=\alpha_0}
(dαdx,dαdy)
α=α0,相应的切线方程为
L
(
x
,
y
)
:
x
sin
α
0
+
y
cos
α
0
=
R
sin
α
0
cos
α
0
L(x,y): x\sin\alpha_0+y\cos\alpha_0=R\sin\alpha_0\cos\alpha_0
L(x,y):xsinα0+ycosα0=Rsinα0cosα0
如果切线
L
(
x
,
y
)
L(x,y)
L(x,y)分别交x、y轴于点
A
(
R
cos
α
0
,
0
)
、
B
(
0
,
R
sin
α
0
)
\mathbf{A}(R\cos\alpha_0,0)、\mathbf{B}(0,R\sin\alpha_0)
A(Rcosα0,0)、B(0,Rsinα0),则线段
A
B
≡
R
\mathbf{AB}~\equiv~ R
AB ≡ R.故星形线可看作由一个线段包络而成。
星形线在公共汽车门中也有应用
一扇折叠式车门所占的地方约占普通车门的3/16 ,大大节约了空间,使车辆能载更多的乘客。