有限域(Galois Field,GF,伽罗华域)的乘法原理

今天在打AES的代码,打到列混合变换的时候对有限域的乘法不是很熟悉,但是查了很多资料结合书本最后算是弄会了,分享一下自己的心得

这里是引用在密码学中经常用到有限域的乘法,一般在AES中用到的是GF(2 ^ 8)有限域内乘法。什么是有限域呢?有限域通俗的讲就是函数的运算结果全都包含在一个域中,不同于实数域,有限域有一个最大值,所有超过这个最大值的数都会经过一定的方法使他回到这个域中,在密码学中应用很广泛,2^8意味着这个域的最大值是256。

下面讲一下乘法的原理(数学原理):

在二进制乘法中,所有的数都能够通过0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80异或得到,二进制表示如下:
从0x01到0x80(即1到a的七次方
所以任意的一个二进制数,都能由这八个二进制数表示得到!

例如73(01110011)可以有以下组合而成:
73(01110011)=(00000001)⊕(00000010)⊕(00010000)⊕(00100000)⊕(01000000)
如果想计算有限域的乘法例如7395的话,即(01110011)(10010101)。刚才我们说了任意的一个二进制数,都能由这八个二进制数表示得到,因此根据乘法的结合律我们可以这样子来算:

73×95=[(00000001)⊕(00000010)⊕(00010000)⊕(00100000)⊕(01000000)]*(10010101)

为什么这样子来算呢?因为仔细观察73的二进制分解,我们可以发现73分解之后每一个元素都是2的倍数。而2的倍数乘以一个2进制数可以直接左移,这样子是不是计算乘法就方便了许多。然后再把总结果异或就可以到到乘法的结果。

为了方便计算,我们定义了一个模型及XTime,及x乘以一个二进制数,这个二进制数用多项式来表示,即:x*a(x)

那么问题又来了,有限域最多为a7x^7,万一最高位为1再去乘就会溢出,所以我们要分别讨论

①当a7的系数为0,即最高位为0的时候,例如01100011,最高位为0,乘以x不会溢出,正常计算,左移就行

②当a7的系数为1,即最高位为1的时候,例如10010101,最高位为1,乘以x会溢出,在计算机中我们应该这样处理这种溢出的情况:把10010101左移一位,右边补0,再与(00011011)异或。对于x²相当于循环运算,乘以x的基础上再乘以x

数学上计算就没有计算机那么麻烦,贴张图:
对照表1
对照表2
GF(2m)域
当m=8时,本原多项式为P(x) = x8 + x4 +x3 + x2 + 1 .
这个很重要,因为一切化解都来源与此式。
在伽罗华域中,加法等同于对应位异或,所以
现在把α定义为P(x) = 0的根,即:

α8+α4+α3+α2+1 = 0
α8=α4+α3+α2+1

在乘积得出来的多项式次数大于7时,我们需要对多项式在GF(2)上关于h(x)求余数,也就是

129×5=(x ^ 7+1)*(x ^ 2+1)=x ^ 9+x ^ 7+x ^ 2+1

将上面的函数加上x*h(x)可以消去x^9,(其实就是手工除法过程,只是现在每一次商总是0或1),所以

129×5=x^ 9+x^ 7+x^ 2+1+x^ 9+x^ 5+x^ 4+x^ 3+x=x^ 7+x^ 5+x^ 4+x^ 3+x^2+x+1
=0010111111=191

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值