算法之霍夫变换(Hough)---20230615

本文介绍了如何利用霍夫变换在深度学习缺陷检测中截取圆形图案。通过展示原始图像和霍夫变换后的图像,阐述了确定圆半径的方法,并提供了单幅图像的霍夫变换代码。同时,讨论了如何适应不同半径的圆进行变换,并展示了批量进行霍夫变换的可能性。
摘要由CSDN通过智能技术生成

一、对于深度学习缺陷分类检测而言,原始图像含有圆形图案,不需要所有背景图像参与训练,仅需要将圆形图案截取下来即可。这时,就需要使用霍夫变换截取圆操作。
1.1、原始图像如下:
在这里插入图片描述
1.2、经霍夫变换后的图像:
在这里插入图片描述
1.3、获取所需搜寻圆半径:直径223,半径110左右;取半径100-120在这里插入图片描述

二、单幅图像霍夫变换函数及代码如下:

# 霍夫变化函数及解释
# HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44119674

觉得有帮助,鼓励下吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值