线性模型

本文深入探讨了线性模型的求解,包括利用公式法解决线性模型的问题,向量求导的应用,以及对率回归的目标函数转换。通过概率函数的转换,证明了最大化似然函数等价于最小化特定形式的目标函数。同时,阐述了线性判别分析中,优化目标与权重向量长度无关的性质。
摘要由CSDN通过智能技术生成

公式法求解线性模型

该公式出现在书中的54页, 问题如下: 已知 E ( w , b ) = ∑ i = 1 m ( y i − w x i − b ) 2 E(w,b)=\sum_{i=1}^m(y_i-wx_i-b)^2 E(w,b)=i=1m(yiwxib)2, 求 w w w b b b的最优解.
证明: 首先将 E ( w , b ) E(w,b) E(w,b)分别对 w w w b b b求偏导,可得:
∂ E ( w , b ) ∂ w = 2 ( w ∑ i = 1 m x i 2 − ∑ i = 1 m ( y i − b ) x i ) ∂ E ( w , b ) ∂ b = 2 ( m b − ∑ i = 1 m ( y i − w x i ) ) \frac{\partial E(w,b)}{\partial w}=2(w\sum_{i=1}^mx_i^2-\sum_{i=1}^m(y_i-b)x_i) \\ \frac{\partial E(w,b)}{\partial b}=2(mb-\sum_{i=1}^m(y_i-wx_i)) wE(w,b)=2(wi=1mxi2i=1m(yib)xi)bE(w,b)=2(mbi=1m(yiwxi))
∂ E ( w , b ) ∂ w = ∂ E ( w , b ) ∂ b = 0 \frac{\partial E(w,b)}{\partial w}=\frac{\partial E(w,b)}{\partial b}=0 wE(w,b)=bE(w,b)=0, 可得:
w ∑ i = 1 m x i 2 − ∑ i = 1 m ( y i − b ) x i = 0 , 式 一 b = 1 m ∑ i = 1 m ( y i − w x i ) , 式 二 w\sum_{i=1}^mx_i^2-\sum_{i=1}^m(y_i-b)x_i=0,式一\\ b=\frac{1}{m}\sum_{i=1}^m(y_i-wx_i),式二 wi=1mxi2i=1m(yib)xi=0,b=m1i=1m(yiwxi),
将式二带入式一可得:
w ∑ i = 1 m x i 2 − ∑ i = 1 m ( y i − 1 m ∑ j = 1 m ( y j − w x j ) ) x i = 0 w ∑ i = 1 m x i 2 − ∑ i = 1 m x i y i + 1 m ∑ i = 1 m ∑ j = 1 m x i y j − 1 m ∑ i = 1 m ∑ j = 1 m w x i x j = 0 w ( ∑ i = 1 m x i 2 − 1 m ( ∑ i = 1 m x i ) 2 ) = − ∑ i = 1 m x i y i + ∑ i = 1 m y i ∑ j = 1 m 1 m x j w = ∑ i = 1 m y i ( x i − x ˉ ) ∑ i = 1 m x i 2 − 1 m ( ∑ i = 1 m x i ) 2 w\sum_{i=1}^mx_i^2-\sum_{i=1}^m(y_i-\frac{1}{m}\sum_{j=1}^m(y_j-wx_j))x_i=0\\ w\sum_{i=1}^mx_i^2-\sum_{i=1}^mx_iy_i+\frac{1}{m}\sum_{i=1}^m\sum_{j=1}^mx_iy_j-\frac{1}{m}\sum_{i=1}^m\sum_{j=1}^mwx_ix_j=0 \\ w(\sum_{i=1}^mx_i^2-\frac{1}{m}(\sum_{i=1}^mx_i)^2)=-\sum_{i=1}^mx_iy_i+\sum_{i=1}^my_i\sum_{j=1}^m\frac{1}{m}x_j \\w=\frac{\sum_{i=1}^my_i(x_i-\bar x)}{\sum_{i=1}^mx_i^2-\frac{1}{m}(\sum_{i=1}^mx_i)^2} wi=1mxi2i=1m(yim1j=1m(yjwxj))xi=0wi=1mxi2i=1mxiyi+m1i=1mj=1mxiyjm1i=1mj=1mwxixj=0w(i=1mxi2m1(i=1mxi)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值