华为的一道机考题,记录一下思路
手下是数学方法解析,算最小公倍数,需要用到最大公约数。首先将用计算机算法算最大公约数的原理。
最大公约数
辗转相除法(欧几里得 Euclidean)
用“较大数”除以“较小数”,再用较小数除以第一余数,再用第一余数除以第二余数;反复直到余数为零为止。
图解:
代码实现:
//迭代
int gcd(int a, int b) // greatest common divisor 最大公约数
{
while(a%b){
int tmp = a;
a = b;
b = tmp%b;
}
return b;
}
//递归
int gcd(int a,int b)
{
if(b == 0)
return a;
return gcd(b,a%b);
}
最小公倍数
首先考虑人工算法。分解质因数法。
比如求45和30的最小公倍数。
45=3*3*5
30=2*3*5
不同的质因数是2。5,3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3.
最小公倍数等于2 * 3 * 3 * 5=90
又如计算36和270的最小公倍数
36=2 * 2 * 3 * 3
270=2 * 3 * 3 * 3 * 5
不同的质因数是5。2这个质因数在36中比较多,为两个,所以乘两次;3这个质因数在270个比较多,为三个,所以乘三次。
最小公倍数等于2 * 2 * 3 * 3 * 3 * 5=540
而通过知道最大公约数,比如45和30的最大公约数为15,即相同的质因数之积为15,两数之积除以最大公约数即去掉相同的质因数,结果为2 * 3 * 3 * 5=90
所以:
最小公倍数 = 两数之积除以最大公约数
代码实现:
#include<iostream>
using namespace std;
int gcd(int a, int b) // greatest common divisor 最大公约数
{
while(a%b){
int tmp = a;
a = b;
b = tmp%b;
}
return b;
}
int main()
{
int a,b;
while(cin >> a >> b){
cout << a*b/gcd(a,b) <<endl;
}
return 0;
}
参考文献:
https://baike.baidu.com/item/%E6%9C%80%E5%A4%A7%E5%85%AC%E7%BA%A6%E6%95%B0/869308?fr=aladdin
https://www.cnblogs.com/lvmf/p/10758468.html
https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E5%85%AC%E5%80%8D%E6%95%B0/6192375?fr=aladdin