计算最大公约数最小公倍数(C++实现)

华为的一道机考题,记录一下思路

手下是数学方法解析,算最小公倍数,需要用到最大公约数。首先将用计算机算法算最大公约数的原理。

最大公约数

辗转相除法(欧几里得 Euclidean)
  
  用“较大数”除以“较小数”,再用较小数除以第一余数,再用第一余数除以第二余数;反复直到余数为零为止。
  图解:
  在这里插入图片描述
在这里插入图片描述

代码实现:

//迭代
int gcd(int a, int b) // greatest common divisor 最大公约数
{
    while(a%b){
        int tmp = a;
        a = b;
        b = tmp%b;
    }
    return b;
 
}
//递归
int gcd(int a,int b)
{
    if(b == 0)
        return a;
    return gcd(b,a%b);
}

最小公倍数

首先考虑人工算法。分解质因数法。
比如求45和30的最小公倍数。

45=3*3*5
30=2*3*5

不同的质因数是2。5,3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3.
  最小公倍数等于2 * 3 * 3 * 5=90
  又如计算36和270的最小公倍数
  36=2 * 2 * 3 * 3
  270=2 * 3 * 3 * 3 * 5
  不同的质因数是5。2这个质因数在36中比较多,为两个,所以乘两次;3这个质因数在270个比较多,为三个,所以乘三次。
  最小公倍数等于2 * 2 * 3 * 3 * 3 * 5=540

而通过知道最大公约数,比如45和30的最大公约数为15,即相同的质因数之积为15,两数之积除以最大公约数即去掉相同的质因数,结果为2 * 3 * 3 * 5=90

所以:
最小公倍数 = 两数之积除以最大公约数

代码实现:

#include<iostream>
using namespace std;
 
int gcd(int a, int b) // greatest common divisor 最大公约数
{
    while(a%b){
        int tmp = a;
        a = b;
        b = tmp%b;
    }
    return b;
 
}
int main()
{
    int a,b;
    while(cin >> a >> b){
        cout << a*b/gcd(a,b) <<endl;
    }
    return 0;
}

参考文献:
https://baike.baidu.com/item/%E6%9C%80%E5%A4%A7%E5%85%AC%E7%BA%A6%E6%95%B0/869308?fr=aladdin

https://www.cnblogs.com/lvmf/p/10758468.html

https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E5%85%AC%E5%80%8D%E6%95%B0/6192375?fr=aladdin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值