2015盏灯,一开始全部熄灭,序号分别是1-2015,先把1的倍数序号的灯的开关全部按一次,然后把2的倍数的灯的开关全部按一次,然后把3的倍数的开关按一次,以此类推,最后把2015的倍数灯的开关按一次。问最后亮着的灯有多少盏?
- 43
- 44
- 45
- 46
具体思路如下:
1—2015每个数字的倍数对应的灯都要按一次开关,初状态为全灭,若一个数可以被一个数字整除,那必有另一个数字可以被该数字整除,例如:12=3*4;那么第12个灯就会分别在3和4的时候按下开关,两次过后灯还是灭的,由此可见,当一个数的因子数是奇数时,其对应的灯最终状态为亮,反之为灭。显然,当一个数的因子数是奇数时必定是某个数的平方。
#include <bits/stdc++.h>
using namespace std;
int main()
{
int cnt = 1;
for(int i = 2; i <= 2015; i++)
{
if(sqrt(i)*sqrt(i) == i)
cnt++;
}
cout<<cnt<<endl;
return 0;
}