概率论基础

概率论(probability theotry)是研究随机现象的数量规律的数学分支。

概率论公理化结构

历史背景:早期的经验定义,多数为古典概型,等可能性假设,事件结果有限性--------->  局限性:几何概率的计算,等可能性假设有循环定义之嫌,基本概念的明确定义;

提出:1933,前苏联数学家 科尔莫戈罗夫

样本点:随机试验的结果;抽象化概念,ω看作抽象的点,它们全体构成样本空间Ω.

设г是由集合Ω中一些子集所构成的 集合族(也叫做集类  ),且满足下述条件:
(1)Ω∈г;
(2)若A∈г,则A的 补集A c∈г;
(3)若An∈г(N=1,2,…)则∪An∈г;
我们称г是一个σ代数(σ域)。
由此定义,σ域对逆、并、交、差的可列次运算封闭,并且包含了Ω和Ø.
我们称r为事件域(event field),r中的元素为事件,其中Ω为必然事件,Ø为不可能事件.

注:在这种定义下,样本点不一定是事件(考虑几何概型)

在样本空间Ω给定的情况下,总有些事件必须作为事件来处理,但是它们未必满足σ域的要求,怎么办??

下证:若给定Ω的一个非空集类r,必定存在唯一的一个Ω上的σ域m(r),具有性质:1)包含r   2)若有其他σ域包含r,则必包含m(r).

这个m(r)称为包含r的最小σ域,也称由r产生的σ域.

注:(证明思路:一切子集构成的集合族显然包含r,取包含r的σ 域之交作为m(r)

由事件域的选取引入博雷尔点集:

【一维博雷尔点集】

我们记R1记数直线或实数全体,并称一切形如[a,b)的左闭右开区间构成的集类所产生的σ域为一维博雷尔σ域,记为β1 

若x,y为任意实数,由于

$$
\begin{eqnarray*}
\{x\}&=&\bigcap_{i=0}^{∞} [x,x+\frac{1}{n})\\(x,y)&=&[x,y)-\{x\}\\ [x,y]&=&[x,y)+\{y\}\\(x,y]&=&[x,y)+\{y\}-\{x\}
\end{eqnarray*}
$$

β1中包含一切开区间,闭区间,单个实数,可列个实数,以及经他们可列次逆、并、交运算而得出的集合。 

【n维博雷尔点集】

概率的严格化定义:

定义在事件域上F的一个集合函数P称为概率,如果它满足一下三个要求:                                      -

(i)   对一切A∈F,P(A)≥0;                                    ---------非负性

(ii)  P(Ω)=1;                                                           ---------规范性

(iii) 若Ai∈F,i=1,2…且两两互不相容,则\[P(\sum_{i=0} ^{\infty} A_{i}=\sum_{i=1}^{∞}P(A_{i}) \qquad\]---------可列可加性或完全可加性

性质1 不可能事件概率为0,即P(Ø)=0.

性质2 概率具有有限可加性. 

性质3 对任何事件A有$P(\bar{A})=1-P(A)$ 

性质4 如果${A}\supset{B},则P(A-B)=P(A)- P(B)$

性质5 $P({A}\cup{B})=P(A)+P(B)-P(AB).$

推论:

$(布尔不等式)    {P({A}\cup{B})}\leq{P(A)+P(B)}$

$(Bonferroni不等式){P(AB)}\geq{P(A)+P(B)-1}$

性质6 一般加法公式 : 若$A_1,A_2,...,A_n$为n个事件,则

\[P({A_1}\cup{A_2}\cup{\dots}\cup{A_n})=\sum _{i=1,\dots,n}P(A_i)-\sum _{\substack{i<j\\i,j=1,...n}}P(A_iA_j)+\sum _{\substack{i<j<k\\i,j=1,\dots,n}}P(A_iA_jA_k)-...+(-1)^{n-1}P(A_1A_2...A_n)\]

高尔顿板

排列组合公式:

牛顿二项式

条件概率:

定义:设$(\Omega,\mathcal{F},P)$是一个概率空间,$B\in\mathcal{F}4,而且P(B)>0,则对任意$A\in\mathcal{F}$,记$P(A | B)=\frac{P(AB)}{P(B)}$

并称P(A | B)为事件B发生的条件下事件A发生的条件概率(conditional probability)

由以上公式得到${P(AB)}={P(B)P(A | B)} $    称为乘法公式或乘法定理   

性质:

(i)${P(A | B)}\geq{0};$

(ii)$P(\Omega |B)=1;$

(iii)$P(\sum_{i=1}^{\infty}{A_{i} | B}=\sum_{i=1}^{\infty}{P(A_{i} | B)}.$

[例](波利亚坛子模型)

全概率公式:

设事件A1,A2,...An,...是样本空间Ω的一个分割,亦称完备事件组,即Ai(i=1,2...n,...)两两不相容,而且

\[\sum_{i=1}^{\infty}{A_i}=Ω\]    这样一来,\[B=\sum_{i=1}^{\infty}{A_{i}B}\]           

\[\longrightarrow P(B)=\sum_{i=1}^{\infty}{P(A_{i})B}\]           ($A_{i}$B互不相容,概率完全可加性)

\[\longrightarrow P(B)=\sum_{i=1}^{\infty}{{P(A_i)}P(B |A_i)}  \]         (乘法公式)

贝叶斯公式(Bayes):

定义:若事件A能且只能与两两互不相容的事件A1,A2,...,An,...之一同时发生,即

\[ B=\sum_{i=1}^{\infty}{BA_i}\]

由于

\[P(A_{i}B)=P(B)P(A_{i} | B)=P(A_i)P(B | A_i)\]

故\[P(A_{i} |B)=\frac{P(A_i)P(B|A_i)}{P(B)}\]

再利用全概率公式即得\[P(A_i |B)=\frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{\infty}{P(A_i)P(B|A_j)}}\]

这个公式称为  贝叶斯公式

我们假定A1,A2,...是导致实验结果的“原因” P(Ai)称为先验概率,它反映了各种“原因”发生的可能性大小,

一般是以往经验的总结在这次试验前已经知道,现若产生了事件B,这个信息将有助于探讨事件发生的原因.

条件概率P(A| B)称为后验概率,它反映了试验之后都各种“原因”发生的可能性大小的新知识.

统计独立性:

事件独立性:

两个事件的独立性:对事件A及B,若\[P(AB)=P(A)P(B)\],则称它们是统计独立的,简称 独立的(independent).

三个事件的独立性:\[\left. {P(AB)=P(A)P(B) \\   P(BC)=P(B)P(C)  \\ P(AC)=P(A)P(C)\\} \right \}  (*) \\P(ABC)=P(A)P(B)P(C)\]

\[f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. \]

试验独立性:    

       ~随机变量  随机向量独立性   随机变量的函数的独立性

伯努利概型及 其中的分布:

1.伯努利分布:

2.二项分布:

3.几何分布:

4.帕斯卡分布:  (巴拿赫火柴盒问题)(分赌注问题)

推广:负二项分布

直线上的随机游动:

1.无限制:

2.有吸收壁:

伯努利试验推广与多项分布:

二项分布与泊松分布:

三   随机变量与分布函数:

分布函数  密度函数

离散型随机变量:

连续型随机变量:

正态分布:   标准正态分布

指数分布:

埃尔朗分布:

随机向量:

边际分布:

条件分布:

随机向量的函数的分布律推导公式(点击链接):

https://wenku.baidu.com/view/23868639376baf1ffc4fad49.html

贝特朗奇论:

伽马函数相关(点击链接

Г函数(点击链接)

Г分布:

卡方分布:

常见分布的数学期望和方差:

1.离散型:

伯努利分布

二项分布的方差推导(点击查看链接)

泊松分布的期望和方差(链接)

几何分布: 

2.连续性场合:

正态分布:

指数分布:

柯西分布:

统一::引进分布  用斯蒂尔切斯积分(Stieltjes)统一化

随机变量函数的数学期望

佚名统计数学家公式

数学期望的基本性质:

方差的基本性质:

切比雪夫不等式

协方差与相关系数:

柯西施瓦茨不等式:

矩:

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值