简明KPCA及其python实现(核主成分分析)

source:python machine learning 3rd

KPCA

核主成分分析-kernel principal component analysis,是一种用于非线性分类的降维工具,实现非线性映射降维
在这里插入图片描述
右图为典型的非线性分类问题

面对这样的分类问题,KPCA其实是先采用增加多项式等方式提高了数据的维度,再使用标准PCA,寻找一个可以进行有效分类的方向进行投影降维。

但是在进行PCA运算时,我们使用近似核心方程处理协方差矩阵,不再进行特征矩阵和特征值的计算(减少计算量),从而直接获得近似的投影后坐标,这与近似核心方程再SVM中的作用是一样的(不清楚背后的数学原理,考研时补好高数线代概率论再回来看吧。。。)

KPCA, PCA与LDA

  • PCA:主要用于线性非监督学习(监督学习也可以)的数据降维
  • LDA:主要用于线性监督学习的数据降维
  • KPCA:得益于PCA非监督及监督学习通吃的特性,KPCA适用于几乎所有的非监督/监督非线性分类问题

核心方程

是否了解用于SVM非线性问题中的核心方程?这里的核心同样代表着使用核心方程实现非线性转换的意思,包括:

  • 多项式核心: κ ( x ( i ) , x ( j ) ) = ( x ( i ) T x ( j ) + θ ) p \kappa\left(x^{(i)}, x^{(j)}\right)=\left(x^{(i)^{T}} x^{(j)}+\theta\right)^{p} κ(x(i),x(j))=(x(i)Tx(j)+θ)p
  • 双曲正切核心: κ ( x ( i ) , x ( j ) ) = tanh ⁡ ( η x ( i ) T x ( j ) + θ ) \kappa\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}\right)=\tanh \left(\eta \boldsymbol{x}^{(i)^{T}} \boldsymbol{x}^{(j)}+\theta\right) κ(x(i),x(j))=tanh(ηx(i)Tx(j)+θ)
  • 高斯核心(RBF): κ ( x ( i ) , x ( j ) ) = exp ⁡ ( − ∥ x ( i ) − x ( j ) ∥ 2 2 σ 2 ) \kappa\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}^{(i)}-\boldsymbol{x}^{(j)}\right\|^{2}}{2 \sigma^{2}}\right) κ(x
  • 12
    点赞
  • 103
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值