文章目录
代码思路来自Python Machine Learning 3rd,本人只是做了一些修改
numpy + pandas实现
我们以pandas内置的wine库来实现,我这里采取的是本地读取
import pandas as pd
df_wine = pd.read_csv('./wine.data')
1. 标准化原始数据集
# 首先分离数据集
from sklearn.model_selection import train_test_split
X, y = df_wine.iloc[:, 1:], df_wine.iloc[:, 0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=0)
# 标准化
from sklearn.preprocesssing import StandardScalor
sc = StandardScalor()
X_train_std = sc.fit_transform(X_train)
X_test_std = sc.transform(X_test)
2. 获得协方差矩阵
使用numpy API
import numpy as np
cov_mat = np.cov(X_train_std.T)
3. 获得特征向量和特征值
使用numpy API
eigen_vals, eigen_vecs = np.linalg<

本文通过numpy和pandas详细介绍了如何实现主成分分析(PCA),包括数据标准化、获取协方差矩阵、特征向量和特征值排序、选择最大特征值的特征向量,以及使用PCA进行维度转换。同时,对比了使用scikit-learn库直接实现PCA的方法,强调PCA通常用于非监督学习场景。
最低0.47元/天 解锁文章

7102

被折叠的 条评论
为什么被折叠?



