主成分分析-python机器学习实现(PCA)

本文通过numpy和pandas详细介绍了如何实现主成分分析(PCA),包括数据标准化、获取协方差矩阵、特征向量和特征值排序、选择最大特征值的特征向量,以及使用PCA进行维度转换。同时,对比了使用scikit-learn库直接实现PCA的方法,强调PCA通常用于非监督学习场景。
摘要由CSDN通过智能技术生成

代码思路来自Python Machine Learning 3rd,本人只是做了一些修改

numpy + pandas实现

我们以pandas内置的wine库来实现,我这里采取的是本地读取

import pandas as pd
df_wine = pd.read_csv('./wine.data')

1. 标准化原始数据集

# 首先分离数据集
from sklearn.model_selection import train_test_split
X, y = df_wine.iloc[:, 1:], df_wine.iloc[:, 0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=0)

# 标准化
from sklearn.preprocesssing import StandardScalor
sc = StandardScalor()
X_train_std = sc.fit_transform(X_train)
X_test_std = sc.transform(X_test)

2. 获得协方差矩阵

使用numpy API

import numpy as np
cov_mat = np.cov(X_train_std.T)

3. 获得特征向量和特征值

使用numpy API

eigen_vals, eigen_vecs = np.linalg<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值