Pytorch学习笔记 1.1:梯度下降

PyTorch入门:理解优化算法与神经网络的梯度下降
本文介绍了PyTorch学习者如何通过理解优化方法(如牛顿法、最小二乘法和梯度下降)来构建神经网络。重点讲解了误差方程、参数调整和局部最优解的概念,强调神经网络如何利用梯度下降找到优秀解。
部署运行你感兴趣的模型镜像

Pytorch学习笔记

Pytorch初学者小白
b站视频:PyTorch 动态神经网络 (莫烦 Python 教学)
在这里插入图片描述初学者总是见到这样的图像,这些图像涉及到了家族的历史——Optimization(优化问题)
在这里插入图片描述优化能力是人类历史上的重大突破,它解决了很多实际生活中的问题,从而渐渐演化出了一个庞大的家族
比如说:
在这里插入图片描述

  • 牛顿法(Newton’s method)
  • 最小二乘法(Least Squares method)
  • 梯度下降(Gradient Descent)

而我们神经网络就是在梯度下降的分支中

初学神经网络的时候 我们总会遇到误差方程(Cost Function):
用来计算预测的值和实际上的值有多大差别
w:是我们神经网络中的参数
x,y都是我们的数据
找到梯度躺平的点,就是误差最小时的w
在这里插入图片描述
可是很多情况下误差曲线却是这样的,梯度躺平的点也不止只有一个
在这里插入图片描述不同的w带来的位置,将会带来不同的下降去区域,不同的下降区域也会带来不同w的解。在这个图中w的全局最优解在原点处,其他的是局部最优解
神经网络可以使你的局部最优足够优秀,以至于出色地完成任务

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值