sklearn线性回归算法

这篇博客介绍了如何使用sklearn库进行线性回归,包括生成数据集、建立模型、获取回归参数和截距项,以及通过R^2评分来评估模型的拟合优度。
摘要由CSDN通过智能技术生成

sklearn做线性回归

  1. 生成数据集
	1. 调用库
	from sklearn.Linear_model import LinerRegression
	from skleran.Linear_model import Lasson
	from sklearn.Linear_model import Ridge
  1. 生成数据集
	from sklearn.Linear_model import train_test_split
	x, y =make_Regression(n_samples=100, n_feature=15, noise=30)
	xtrain, ytrain, xtest, ytest = train_test_split(x,y,test_size=0.3)
  1. 线性回归
	# 普通线性回归
	lr = LinearRegression().fit(xtrain,ytrain)
	# lasso回归
	La_l1 = LinearRegressi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值