LeetCode:300 最长上升子序列 O(nlog(n))解法 动态规划/二分搜索

该博客详细介绍了如何使用动态规划结合二分搜索,在 O(nlog(n)) 的时间复杂度内解决 LeetCode 300题——最长上升子序列的问题。通过维护一个升序数组并利用二分搜索,找到合适位置拓展序列,最终返回序列长度作为答案。
摘要由CSDN通过智能技术生成

题目

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

动态规划

状态定义

dp[i]表示以下标i结尾的最长上升子序列长度

状态转移:在前面找最长的,然后+1即可

dp[i] = max(dp[0], dp[1], ... dp[i-1]) + 1
class Solution {
   
public:
    int lengthOfLIS(vector<int>& nums)
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值