问题描述:
T组案例
每组案例:
给一个字符串s,q个询问
每个询问问LR区间内本质不同的回文串有多少个
1≤T≤10, 1≤length≤1000, 1≤Q≤100000, 1≤l≤r≤length
分析:
由题可知字符串长度很短只有1000,因此可以想到尝试直接LR枚举
但是Q很大(1e5)
如果每次都是区间1-len最多要1e8,直接爆了
但是因为长度只有1000,可以预处理所有区间的情况,最多1000(1000-1)/2也就是5e5
然后询问可以O(1)输出
code:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int maxm=1e3+5;
struct Pam{
int nt[maxm][26];//下一个节点
int fail[maxm];//失配指针
int cnt[maxm];//节点i表示的本质不同的串的个数(最后cal完才是准确的)
int num[maxm];//节点i表示的回文串的回文后缀个数
int len[maxm];//节点i表示的回文串长度
int s[maxm];//存放添加的字符
int last;//新添加一个字母后所形成的最长回文串对应节点
int n;//添加的字符数,也是s数组的长度
int p;//节点指针,表示节点数量
int newnode(int x){//创建新节点
for(int i=0;i<26;i++){
nt[p][i]=0;
}
cnt[p]=num[p]=0;
len[p]=x;//长度为x
return p++;
}
void init(){//初始化
p=n=last=0;
newnode(0);//偶数长度树
newnode(-1);//奇数长度树
s[n]=-1;//设置第一个字符为-1(也可以是其他不可能被匹配的字符)
fail[0]=1;
}
int getfail(int x){//利用fail找到匹配的节点
while(s[n-len[x]-1]!=s[n])x=fail[x];
return x;
}
void add(int c){
c-='a';
s[++n]=c;
int cur=getfail(last);
if(!nt[cur][c]){//如果没有就新建一个节点
int now=newnode(len[cur]+2);//从cur拓展而来
fail[now]=nt[getfail(fail[cur])][c];
nt[cur][c]=now;
num[now]=num[fail[now]]+1;
}
last=nt[cur][c];
cnt[last]++;
}
void cal(){
for(int i=p-1;i>=0;i--){
cnt[fail[i]]+=cnt[i];
}
}
}p;
char s[maxm];
int ans[maxm][maxm];
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%s",s+1);
int len=strlen(s+1);
for(int i=1;i<=len;i++){//枚举开头
p.init();
for(int j=i;j<=len;j++){//枚举结尾
p.add(s[j]);
ans[i][j]=p.p-2;
}
}
int q;
scanf("%d",&q);
while(q--){
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",ans[l][r]);
}
}
return 0;
}