hdu2457 DNA repair(AC自动机上dp)

题意:

给定m个模式串和一个匹配串,只包含字符ACGT,
一次操作你可以修改匹配串的一个字符(只能修改为ACGT中的一种),
问最少进行多少次操作,能使得匹配串不包含任意模式串,
输出最少操作次数,如果无解输出-1。

数据范围:m<=50,|每个模式串|<=20,|匹配串|<=1000

解法:
对模式串建立ac自动机,
设匹配串的长度为位n
那么问题变为在ac自动机上走n步,不能走到任意模式串的结尾处.
如果按照匹配串的字符走,那么不需要代价,如果不按照匹配串的字符走,那么代价为1.
那么就是在合法情况下(不走到模式串结尾),求走n步的最小代价.

令d[i][j]表示走i步,当前在节点j上,的最小代价
转移方程:
设下一步走k,下一个节点为nt[j][k],设nt[i][j]=x
d[i+1][x]=min(d[i+1][x],d[i][j]+(s[i+1]和字符k不同) )

在ac自动机上dp即可.
code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=2e3+5;
char s[maxm];
int n,m;
int get(char c){
    if(c=='A')return 0;
    if(c=='C')return 1;
    if(c=='G')return 2;
    return 3;
}
struct AC{
    int a[maxm][4],fail[maxm],val[maxm],tot=0;
    void init(){
        for(int i=0;i<=tot;i++){
            memset(a[i],0,sizeof a[i]);
            val[i]=fail[i]=0;
        }
        tot=0;
    }
    void add(char *s){
        int len=strlen(s);
        int node=0;
        for(int i=0;i<len;i++){
            int v=get(s[i]);
            if(!a[node][v])a[node][v]=++tot;
            node=a[node][v];
        }
        val[node]++;
    }
    void build(){//构造fail
    	queue<int>q;
        for(int i=0;i<4;i++){
            if(a[0][i]){
                q.push(a[0][i]);
            }
        }
        while(!q.empty()){
            int x=q.front();
            q.pop();
            val[x]+=val[fail[x]];
            for(int i=0;i<4;i++){
                if(a[x][i]){
                    fail[a[x][i]]=a[fail[x]][i];
                    q.push(a[x][i]);
                }else{
                    a[x][i]=a[fail[x]][i];
                }
            }
        }
    }
    //
    int d[1005][maxm];//d[i][j]表示走i步,当前在j节点上的最小代价.
    int solve(){
        //init
        for(int i=0;i<=n;i++){
            for(int j=0;j<=tot;j++){
                d[i][j]=1e9;
            }
        }
        //dp
        d[0][0]=0;
        for(int i=0;i<n;i++){
            for(int j=0;j<=tot;j++){
                if(d[i][j]==1e9)continue;
                int now=get(s[i+1]);
                for(int k=0;k<4;k++){
                    int x=a[j][k];
                    if(val[x])continue;
                    d[i+1][x]=min(d[i+1][x],d[i][j]+(k!=now));
                }
            }
        }
        //
        int ans=1e9;
        for(int j=0;j<=tot;j++){
            ans=min(ans,d[n][j]);
        }
        if(ans==1e9)ans=-1;
        return ans;
    }
}ac;
signed main(){
    int cas=1;
    while(scanf("%d",&m)!=EOF&&m){
        ac.init();
        for(int i=1;i<=m;i++){
            scanf("%s",s);
            ac.add(s);
        }
        ac.build();
        //
        scanf("%s",s+1);
        n=strlen(s+1);
        int ans=ac.solve();
        printf("Case %d: ",cas++);
        printf("%d\n",ans);
    }
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值