google最新大语言模型gemma本地化部署

Google推出的新模型Gemma具有本地化、开源和高性能特性,依赖小且可高度定制。文章详细介绍了Gemma的不同版本、安装步骤,以及如何通过ollama和open-webui进行交互和配置,如调整上下文长度和最大令牌数以优化GPU性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gemma是google推出的新一代大语言模型,构建目标是本地化、开源、高性能。

     与同类大语言模型对比,它不仅对硬件的依赖更小,性能却更高。关键是完全开源,使得对模型在具有行业特性的场景中,有了高度定制的能力。

     Gemma模型当下有四个版本,Gemma 7b, 2b, 2b-it, 7b-it 。通俗来说,2b及精简小巧,覆盖了现代流行的语言,对硬件依赖小。7b是常规型的,要有的基本都有了,硬件上最低需要8gb内存(显存)。后缀带it的版本,可适用于nvidia较新显卡,支持int8(fp8), tensorrt核心。但我的40hx硬件被阉割太厉害,连fp16都跑不起来,就没测试了。

安装环境:

我的硬件环境是虚拟机环境,40hx显卡直通,linux系统,远程访问。软件环境需要目标是ollama及open-webui。ollama是大语言模型的一个运行环境,open-webui是基于openAI及ollama的一个前端界面。目前ollama只支持nvidia的GPU加速,别的显卡就不讨论了。

安装过程:

1. 虚拟机安装,这边需要注意的是,显卡必须直通,CPU必须在主机直通模式。不然GPU加速就不能成功。

2. 安装常用的软件,wget curl git nvidia-toolkit

3. 确认环境:nvidia-smi看一下显卡是不是正常驱动࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值