2024年Go最新google最新大语言模型gemma本地化部署_gemma对服务器要求(1),重难点整理

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

Gemma是google推出的新一代大语言模型,构建目标是本地化、开源、高性能。

与同类大语言模型对比,它不仅对硬件的依赖更小,性能却更高。关键是完全开源,使得对模型在具有行业特性的场景中,有了高度定制的能力。

Gemma模型当下有四个版本,Gemma 7b, 2b, 2b-it, 7b-it 。通俗来说,2b及精简小巧,覆盖了现代流行的语言,对硬件依赖小。7b是常规型的,要有的基本都有了,硬件上最低需要8gb内存(显存)。后缀带it的版本,可适用于nvidia较新显卡,支持int8(fp8), tensorrt核心。但我的40hx硬件被阉割太厉害,连fp16都跑不起来,就没测试了。

安装环境:

我的硬件环境是虚拟机环境,40hx显卡直通,linux系统,远程访问。软件环境需要目标是ollama及open-webui。ollama是大语言模型的一个运行环境,open-webui是基于openAI及ollama的一个前端界面。目前ollama只支持nvidia的GPU加速,别的显卡就不讨论了。

安装过程:

  1. 虚拟机安装,这边需要注意的是,显卡必须直通,CPU必须在主机直通模式。不然GPU加速就不能成功。

  2. 安装常用的软件,wget curl git nvidia-toolkit

  3. 确认环境:nvidia-smi看一下显卡是不是正常驱动,cat /proc/cpuinfo 看一下AVX是否加载。这二点决定了GPU加速

  4. 在linux上运行:(要科学)

curl -fsSL https://ollama.com/install.sh | sh

然后等待安装完成,安装完成后,执行 ollama run gemma:2b 或者 ollama run gemma:7b 等模型下载完毕后,就进入字符界面,你就可以跟机器交流了。按ctrl-d可退出。

  1. 远程访问:

因为我是在服务器上安装的,操作需要在PC上,所以需要做一下远程

sudo nano /etc/systemd/system/ollama.service (我是ubuntu系统debian类似,其它系统查看services配置方法)

在nano中,[Service]下面加一行 Environment=“OLLAMA_HOST=0.0.0.0:11434”

保存退出后,执行 sudo systemctl daemon-reload 再执行 sudo systemctl restart ollama

PC端打开浏览器,访问http://你的服务器IP:11434 如果显示ollama表示已经成功了。

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值