轻松部署Gemma3-27B,L20服务器+最新版vLLM高效推理

Google最新开源的Gemma3-27B模型凭借其128K长上下文支持、多模态能力和接近闭源模型的性能表现,已成为企业级AI部署的热门选择。vLLM 0.7.4最新版已支持Gemma3-27B大模型!结合NVIDIA L20显卡的48GB大显存和vLLM推理框架的高吞吐特性,本文将详解从环境搭建到服务调优的全流程,助你快速实现高效推理。

一、环境准备

1.1 硬件配置

服务器数量CPU内存(TB)系统版本
NVIDIA L20 48GB * 81INTEL 8458P *22Ubuntu 20.04

1.2 系统环境

软件名称版本备注
NVIDIA Driver550.54.14GPU驱动
CUDA12.4Cuda
vLLM0.7.4.dev473+g9ed6ee92.precompiledLLM推理引擎

1.3 Gemma3-27B模型下载

  • 方式一:通过HuggingFace 下载

仓库地址:https://huggingface.co/google/gemma-3-27b-it

  • 方式二:通过HuggingFace镜像站-AI快站下载

仓库地址:https://aifasthub.com/google/gemma-3-27b-it

#下载AI快站下载器
wget https://fast360.xyz/images/hf-fast.sh
chmod a+x hf-fast.sh
#下载模型文件
./hf-fast.sh google/gemma-3-27b-it

模型文件大小为43G。

1.4 系统初始化

请参考之前文章:生产环境H200部署DeepSeek 671B 满血版全流程实战(一):系统初始化-CSDN博客

二、安装vLLM

2.1 创建虚拟环境

为避免依赖冲突,使用Conda创建独立环境:

conda create -n gemma3 python=3.12  
conda activate gemma3

2.2 安装最新版vLLM

这里我们使用Git安装最新版vLLM,以获取最新的功能和优化。

#使用阿里云pip源来加速下载
pip install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple/

git clone https://github.com/vllm-project/vllm.git
cd vllm
VLLM_USE_PRECOMPILED=1 pip install --editable . -i https://mirrors.aliyun.com/pypi/simple/

由于vLLM代码更新较快,编译安装最新版vLLM会因为本地 Git 分支与上游仓库不同步,如果遇到类似 "Local main branch is not up-to-date with upstream" 的错误:

Building wheels for collected packages: vllm
  Building editable for vllm (pyproject.toml) ... error
  error: subprocess-exited-with-error
  
  × Building editable for vllm (pyproject.toml) did not run successfully.
  │ exit code: 1
  ╰─> [114 lines of output]
      /tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/torch/_subclasses/functional_tensor.py:275: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:81.)
        cpu = _conversion_method_template(device=torch.device("cpu"))
      running editable_wheel
      creating /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info
      writing /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/PKG-INFO
      writing dependency_links to /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/dependency_links.txt
      writing entry points to /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/entry_points.txt
      writing requirements to /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/requires.txt
      writing top-level names to /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/top_level.txt
      writing manifest file '/tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/SOURCES.txt'
      reading manifest template 'MANIFEST.in'
      adding license file 'LICENSE'
      writing manifest file '/tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm.egg-info/SOURCES.txt'
      creating '/tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm-0.7.4.dev474+g3556a414.precompiled.dist-info'
      creating /tmp/pip-wheel-4p1g9k_b/.tmp-rnwn8w46/vllm-0.7.4.dev474+g3556a414.precompiled.dist-info/WHEEL
      running build_py
      running build_ext
      Traceback (most recent call last):
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 139, in run
          self._create_wheel_file(bdist_wheel)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 340, in _create_wheel_file
          files, mapping = self._run_build_commands(dist_name, unpacked, lib, tmp)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 263, in _run_build_commands
          self._run_build_subcommands()
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 290, in _run_build_subcommands
          self.run_command(name)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command
          self.distribution.run_command(command)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/dist.py", line 999, in run_command
          super().run_command(command)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command
          cmd_obj.run()
        File "<string>", line 333, in run
        File "<string>", line 319, in get_base_commit_in_main_branch
      ValueError: Local main branch (3556a414341033aad1bbb84674ec16b235324b25) is not up-to-date with upstream main branch (b82662d9523d9aa1386d8d1de410426781a1fa3b). Please pull the latest changes from upstream main branch first.
      /tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/dist.py:1021: _DebuggingTips: Problem in editable installation.
      !!
      
              ********************************************************************************
              An error happened while installing `vllm` in editable mode.
      
              The following steps are recommended to help debug this problem:
      
              - Try to install the project normally, without using the editable mode.
                Does the error still persist?
                (If it does, try fixing the problem before attempting the editable mode).
              - If you are using binary extensions, make sure you have all OS-level
                dependencies installed (e.g. compilers, toolchains, binary libraries, ...).
              - Try the latest version of setuptools (maybe the error was already fixed).
              - If you (or your project dependencies) are using any setuptools extension
                or customization, make sure they support the editable mode.
      
              After following the steps above, if the problem still persists and
              you think this is related to how setuptools handles editable installations,
              please submit a reproducible example
              (see https://stackoverflow.com/help/minimal-reproducible-example) to:
      
                  https://github.com/pypa/setuptools/issues
      
              See https://setuptools.pypa.io/en/latest/userguide/development_mode.html for details.
              ********************************************************************************
      
      !!
        cmd_obj.run()
      Traceback (most recent call last):
        File "/home/ubuntu/miniconda3/envs/gemma3-2/lib/python3.12/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 389, in <module>
          main()
        File "/home/ubuntu/miniconda3/envs/gemma3-2/lib/python3.12/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 373, in main
          json_out["return_val"] = hook(**hook_input["kwargs"])
                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "/home/ubuntu/miniconda3/envs/gemma3-2/lib/python3.12/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 303, in build_editable
          return hook(wheel_directory, config_settings, metadata_directory)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/build_meta.py", line 476, in build_editable
          return self._build_with_temp_dir(
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/build_meta.py", line 407, in _build_with_temp_dir
          self.run_setup()
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/build_meta.py", line 320, in run_setup
          exec(code, locals())
        File "<string>", line 682, in <module>
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/__init__.py", line 117, in setup
          return distutils.core.setup(**attrs)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/core.py", line 186, in setup
          return run_commands(dist)
                 ^^^^^^^^^^^^^^^^^^
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/core.py", line 202, in run_commands
          dist.run_commands()
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands
          self.run_command(cmd)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/dist.py", line 999, in run_command
          super().run_command(command)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command
          cmd_obj.run()
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 139, in run
          self._create_wheel_file(bdist_wheel)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 340, in _create_wheel_file
          files, mapping = self._run_build_commands(dist_name, unpacked, lib, tmp)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 263, in _run_build_commands
          self._run_build_subcommands()
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/command/editable_wheel.py", line 290, in _run_build_subcommands
          self.run_command(name)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command
          self.distribution.run_command(command)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/dist.py", line 999, in run_command
          super().run_command(command)
        File "/tmp/pip-build-env-tl3kug_g/overlay/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command
          cmd_obj.run()
        File "<string>", line 333, in run
        File "<string>", line 319, in get_base_commit_in_main_branch
      ValueError: Local main branch (3556a414341033aad1bbb84674ec16b235324b25) is not up-to-date with upstream main branch (b82662d9523d9aa1386d8d1de410426781a1fa3b). Please pull the latest changes from upstream main branch first.
      [end of output]
  
  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building editable for vllm
Failed to build vllm
ERROR: Failed to build installable wheels for some pyproject.toml based projects (vllm)

解决办法:进入 vllm 源码目录,强制同步上游分支,确保本地代码与官方仓库完全同步

git fetch origin main
git reset --hard origin/main
git pull --rebase

#重新执行编译安装
VLLM_USE_PRECOMPILED=1 pip install --editable . -i https://mirrors.aliyun.com/pypi/simple/

验证安装是否成功:

2.3 安装transformers

pip install git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3

三、运行vLLM服务

完成vLLM的安装后,我们就可以启动vLLM服务,加载Gemma3-27B模型,开始进行推理。

1. 激活 vllm 环境,确保在 vllm 的 conda 环境中

conda activate gemma3

2. 启动 vLLM 服务: 使用 vllm serve 命令启动 vLLM 服务,并加载 Gemma3-27B 模型。

conda activate gemma3

#使用2块L20加载模型
export CUDA_VISIBLE_DEVICES=0,1
vllm serve /data/gemma-3-27b/gemma-3-27b-it --tensor-parallel-size 2 --max-model-len 16384 --port 8102  --trust-remote-code  --served-model-name gemma3-27b --enable-chunked-prefill --max-num-batched-tokens 2048 --gpu-memory-utilization 0.95

参数说明:

  • /path/to/gemma-3-27b-it:Gemma3-27B模型的路径,替换为你实际的路径。
  • --tensor-parallel-size 2:使用2块GPU进行模型并行推理,根据实际情况修改。
  • --max-model-len 16384:模型支持的最大输入长度。
  • --port 8102:服务端口号。
  • --trust-remote-code:信任远程代码。
  • --served-model-name gemma3-27b:服务名称。
  • --enable-chunked-prefill:开启chunked prefill,可以提高推理速度。
  • --max-num-batched-tokens 2048:最大batch token数量。
  • --gpu-memory-utilization 0.95:GPU显存利用率。

3. Nvitop监控

可以使用Nvitop监控GPU的使用情况。

四、验证服务可用性

启动vLLM服务后,我们可以发送API请求,测试服务是否正常运行。

curl -X POST "http://localhost:8102/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "model": "gemma3-27b",
  "messages": [{"role": "user", "content": "写个100字的散文"}]
}'

预期结果:返回模型生成的文本内容,表示服务部署成功。

五、总结

本文详细介绍了如何在L20服务器上使用最新版vLLM部署Gemma3-27B模型。通过本文相信你已经成功搭建起了Gemma的推理引擎,可以尽情探索大模型的奥秘。Gemma3-27B模型凭借其强大的语言理解和生成能力,将在各种实际应用场景中发挥重要作用。

<think>好的,我现在需要帮助用户了解如何使用vLLM部署GEMMA3 27B模型。首先,我需要确认用户的需求。用户可能已经知道vLLM是一个高效推理和服务框架,想用它来部署较大的模型如GEMMA3 27B。我需要整理相关步骤,并确保信息准确。 首先,查阅vLLM的官方文档,看看是否支持GEMMA模型。根据之前的引用,Gemma是谷歌发布的轻量级开源模型,而vLLM支持多种架构,比如Llama、Mistral等,但需要确认是否适配Gemma的结构。可能需要用户自行验证兼容性,或者是否有社区贡献的支持。 然后,安装vLLM是关键步骤。用户需要安装最新版本的vLLM,可能通过pip或从源码安装。需要注意CUDA版本兼容性,因为vLLM依赖CUDA进行加速。 接下来是模型下载。用户需要从Hugging Face或官方仓库获取GEMMA3 27B的模型文件,确保下载的是支持PyTorch格式的版本。例如,Hugging Face上的模型可能需要转换或直接使用。 编写启动脚本时,需要了解vLLM的启动命令和参数。例如,使用`vllm.entrypoints.api_server`启动API服务,指定模型路径、tensor并行度、端口等。此外,可能需要调整参数如dtype为bfloat16以节省显存,设置gpu_memory_utilization来优化显存使用。 调用服务部分,用户可以通过curl或Python客户端发送请求。需要提供示例代码,展示如何构造请求体,处理响应。同时,可能需要处理授权问题,如果模型需要API token,需在请求头中添加。 在注意事项里,显存需求是一个重点。GEMMA3 27B可能需要多块GPU,比如使用tensor并行度2或4。需要提醒用户检查硬件资源是否足够,以及如何监控显存使用。 此外,用户可能遇到的问题包括模型格式不兼容、CUDA版本不匹配、依赖缺失等。需要建议安装正确的依赖,如特定版本的PyTorch和Transformers库。 最后,生成相关问题,帮助用户进一步了解模型部署的优化、性能监控、量化方法,以及结合其他工具的使用,比如LangChain。这些问题需要覆盖用户可能感兴趣的扩展话题,帮助他们深入应用。 确保回答中所有数学公式和代码符合格式要求,使用中文,结构清晰,引用正确。检查是否有遗漏的步骤或潜在问题,确保用户能够顺利按照指导进行操作。</think>### 使用vLLM部署GEMMA3 27B模型的步骤 #### 1. **环境准备** - 确保GPU驱动、CUDA(>=11.8)和PyTorch(>=2.0)已安装。 - 安装vLLM: ```bash # 从源码安装(推荐) git clone https://github.com/vllm-project/vllm.git cd vllm && pip install -e . # 或直接通过pip安装 pip install vllm ``` #### 2. **下载GEMMA3 27B模型** - 从Hugging Face下载模型权重(需访问权限): ```bash huggingface-cli download google/gemma-27b --local-dir ./gemma-27b ``` 若模型需要API token,需在Hugging Face账户中申请[^4]。 #### 3. **编写启动脚本** 创建`launch_gemma.py`文件,使用vLLM的API服务器: ```python from vllm.entrypoints import api_server api_server.start_http_server( model="google/gemma-27b", tensor_parallel_size=4, # 根据GPU数量调整(如4块A100) port=8000, dtype="bfloat16", # 显存优化 gpu_memory_utilization=0.9, trust_remote_code=True # 允许加载自定义模型代码 ) ``` #### 4. **启动服务** ```bash python launch_gemma.py ``` 服务启动后,可通过`http://localhost:8000`进行访问。 #### 5. **调用模型API** 使用Python客户端调用: ```python from vllm import LLM, SamplingParams sampling_params = SamplingParams(temperature=0.7, max_tokens=200) llm = LLM(model="google/gemma-27b", tensor_parallel_size=4) prompts = ["请解释量子计算的原理。"] outputs = llm.generate(prompts, sampling_params) for output in outputs: print(output.outputs[0].text) ``` #### 6. **注意事项** - **显存需求**:27B模型需至少4块40GB显存的GPU(如A100-40G),若显存不足可启用`swap_space`参数使用磁盘交换。 - **模型格式**:确保模型目录包含`config.json`和`pytorch_model.bin`文件。 - **授权问题**:若从Hugging Face下载模型时提示需要认证,需在代码中添加`token="YOUR_TOKEN"`参数[^1]。 --- ### 性能优化建议 1. **量化部署**:使用`dtype="float16"`或AWQ量化减少显存占用。 2. **批处理**:通过`batch_size`参数提高吞吐量,例如`api_server(..., max_num_batched_tokens=4096)`。 3. **监控工具**:结合`nvidia-smi`和vLLM内置的Prometheus指标监控显存和吞吐量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值