牛顿法及牛顿下山法
简介:牛顿迭代法是求解单变量非线性方程f(x)=0中最实用的方法,该方法在单根附近二阶收敛。但应用时要选用较好的初值x0近似才能保证迭代收敛。为克服这一缺点,可使用牛顿下山法。下面对牛顿迭代法和牛顿下山法的概念、基本思想、程序实现及例题做进一步介绍。
一、牛顿法
1、定义及定理
如果函数f(x)在[a,b]上有二阶导数,f(a)*f(b)<0,且f'(x)与f"(x)在[a,b]上不变号,则有f(x)在[a,b]内有且仅有唯一的实根。此时,可以构造一种常用的切线迭代法来求方程根的近似值,这种方法称为Newton迭代法。
2、基本思想
首先选取函数值与二阶导数同号的端点,做曲线f(x)的切线,此切线与x轴交于[a,b]内一点x1;在做曲线f(x)对应于点x1的切线并交于x轴与另一点x2;依次类推,切线与x轴的交点将快速逼近函数f(x)的零点。此时,将切线与x轴的交点作为方程的近似根。适用情况如下图所示。
误差分析:当时,
。其中m=min{|f'(a)|,|f'(b)|}。详细推导参照《高等数学简明教程上》,马知恩著。
具体步骤:
步1:选定初始近似值x0,计算f0=f(x0),f'0=f'(x0)。注意:取迭代初值x0,一般取x0=a,或x0=b(要求f(x0)与f''(x0)同号)。
步2:迭代。按公式