利用MATLAB来绘制二维随机变量的联合概率密度图像

科研 专栏收录该内容
19 篇文章 2 订阅

本文档通过MATLAB来绘制二维随机变量(X,Y)的联合概率密度函数。
第一种类型,X服从标准正态分布,Y服从均匀分布。
【例题】已知随机变量X与Y相互独立,X~N(0,1);Y在区间[0,2]上服从均匀分布。求:
(1)二维随机变量(X,Y)的联合概率密度。
(2)概率P(X ≥ \geq Y)
解答:
(1)随机变量X的概率密度为
f X ( x ) = 1 2 π e − x 2 2 − ∞ < x < ∞ f_{X} (x)=\frac{1}{\sqrt{2\pi} } e^{-\frac{x^2}{2} } -\infty <x<\infty fX(x)=2π 1e2x2<x<
随机变量Y的概率密度为
f Y ( y ) = { 1 2 , y = ( 0 , 2 ) 0 , y = 其 它 f_{Y} (y)=\begin{cases} & \frac{1}{2}, y= (0,2)\\ & 0 , y=其它 \end{cases} fY(y)={21,y=(0,2)0,y=
因为X与Y相互独立,所以二维随机变量(X,Y)的联合概率密度为:
f ( x , y ) = { 1 2 2 π e − x 2 2 , x = − ∞ < x < ∞ , 0 ≤ y ≤ 2 0 , 其 它 f(x,y)=\begin{cases} & \frac{1}{2\sqrt{2\pi } }e^{-\frac{x^2}{2} }, x=-\infty <x<\infty ,0\le y\le 2 \\ & 0, 其它 \end{cases} f(x,y)={22π 1e2x2,x=<x<,0y20,
此二维随机变量的联合概率密度函数用MATLAB来绘制,其代码如下
x=-10:0.1:10;
y=0:0.1:1;
z=ones(length(y),1)(exp(-x.^2)/2)/(2sqrt(2*pi));
mesh(x,y,z)
输出图像为
在这里插入图片描述
(2)概率P(X ≥ \geq Y)就是随机点(X,Y)落在平面区域X ≥ \geq Y内的概率。
在这里插入图片描述

第二种类型:X与Y均服从正态分布,且不独立。
【例题】设二维随机变量(X,Y)的联合概率密度函数为
f ( x , y ) = 5 96 π e − 25 32 [ ( x − 1 ) 2 9 + ( x − 1 ) ( y − 2 ) 10 + ( y − 2 ) 2 16 ] f\left ( x,y \right ) =\frac{5}{96\pi }e ^{-\frac{25}{32}\left [ \frac{\left ( x-1\right )^{2} }{9} +\frac{\left ( x-1 \right )\left ( y-2 \right ) }{10}+\frac{\left ( y-2 \right )^2 }{16} \right ] } f(x,y)=96π5e3225[9(x1)2+10(x1)(y2)+16(y2)2]
(1)例用MATLAB画出联合密度函数图
(2)求随机变量函数Z=X/3-Y/4的数学期望和方差
【解答】
(1)根据二维随机变量(X,Y)服从二维正态分布的概率函数
f ( x , y ) = 1 2 π σ x σ y 1 − r 2 e − 1 2 ( 1 − r 2 ) [ ( x − μ x ) 2 σ x 2 + 2 r ( x − μ x ) ( y − μ y ) σ x σ y + ( y − μ y ) 2 σ y 2 ] f\left ( x,y \right ) =\frac{1}{2\pi\sigma _{x}\sigma _{y}\sqrt{1-r^2} }e ^{-\frac{1}{2\left ( 1-r^2 \right ) }\left [ \frac{\left ( x-\mu _{x} \right )^{2} }{\sigma _{x}^2 } +\frac{2r\left ( x-\mu _{x} \right )\left ( y-\mu _{y} \right ) }{\sigma _{x} \sigma _{y} } +\frac{\left ( y-\mu _{y} \right )^2 }{\sigma _{y}^{2} } \right ] } f(x,y)=2πσxσy1r2 1e2(1r2)1[σx2(xμx)2+σxσy2r(xμx)(yμy)+σy2(yμy)2]
记作:
( X , Y ) ∼ N ( μ X , μ Y , σ X 2 , σ Y 2 , r ) \left ( X,Y \right ) \sim N\left ( \mu _{X} ,\mu _{Y} ,\sigma _{X}^2,\sigma _{Y}^2,r \right ) (X,Y)N(μX,μY,σX2,σY2,r)r的绝对值小于1.
可知, E ( X ) = 1 , E ( Y ) = 2 , D ( X ) = 9 , D ( Y ) = 16 , R ( X , Y ) = r = − 3 5 E\left ( X \right ) =1,E\left ( Y \right ) =2,D\left ( X \right ) =9,D\left ( Y \right ) =16,R(X,Y)=r=-\frac{3}{5} E(X)=1,E(Y)=2,D(X)=9,D(Y)=16,R(X,Y)=r=53
程序代码为:
clc;
clear;
x=-4:0.1:6;
y=-3:0.1:7;
[X,Y]=meshgrid(x,y);
Z=5exp(-25((X-1).2+(X-1).*(Y-2)/10+(Y-2).2/16)/32)/(96*pi);
mesh(X,Y,Z); %绘制三维网格图

运行后三维网格图的图像为:
在这里插入图片描述
(2) c o v ( X , Y ) = R ( X , Y ) σ x σ y = − 36 5 cov\left ( X,Y \right ) =R\left ( X,Y \right ) \sigma _{x} \sigma _{y}=-\frac{36}{5} cov(X,Y)=R(X,Y)σxσy=536
E ( Z ) = E ( X 3 − Y 4 ) = − 1 6 E\left ( Z \right ) =E\left ( \frac{X}{3}-\frac{Y}{4} \right ) =-\frac{1}{6} E(Z)=E(3X4Y)=61
D ( Z ) = D ( X 3 − Y 4 ) = ( 1 3 ) 2 D ( X ) + ( − 1 4 2 D ( Y ) ) + 2 × 1 4 × ( − 1 4 ) = 16 5 D\left ( Z \right ) =D\left ( \frac{X}{3} -\frac{Y}{4} \right ) =\left ( \frac{1}{3} \right )^2D\left ( X \right ) +\left ( -\frac{1}{4}^2D\left ( Y \right ) \right ) +2\times \frac{1}{4}\times \left ( -\frac{1}{4} \right ) =\frac{16}{5} D(Z)=D(3X4Y)=(31)2D(X)+(412D(Y))+2×41×(41)=516
第三种类型:X与Y均服从标准正态分布,且相互独立
【例题】设随机变量X与Y相互独立,都服从标准正态分布N(0,1),求:
(1)画出该二维随机变量的联合概率密度函数图像。
(2)求出随机变量函数 Z = X 2 + Y 2 Z=X^{2} +Y^{2} Z=X2+Y2 的概率密度
【解答】
(1)相互独立的二维随机变量X与Y的联合概率密度函数为
f ( x , y ) = f X ( x ) f Y ( y ) = 1 2 π e − x 2 + y 2 2 f\left ( x,y \right ) =f_X\left ( x \right ) f_Y\left ( y \right ) =\frac{1}{2\pi }e^{-\frac{x^2+y^2}{2} } f(x,y)=fX(x)fY(y)=2π1e2x2+y2
绘制该函数用到的代码为:
vx=-4:0.1:4;
[X,Y]=meshgrid(vx);
Z=exp(-(X.2+Y.2)/2)/(2*pi);
mesh(X,Y,Z);
绘制的联合概率密度图像为
XY独立且服从标准正态分布
(2)随机变量 Z = X 2 + Y 2 Z=X^{2} +Y^{2} Z=X2+Y2 的分布函数为
F Z ( z ) = P ( Z ≤ z ) = P ( X 2 + Y 2 ≤ z ) = ∬ x 2 + y 2 ≤ z e − x 2 + y 2 2 d x d y = 1 − e z 2 F_{Z} \left ( z \right ) =P\left ( Z\le z \right ) =P\left ( X^2+Y^2\le z \right ) =\iint\limits_{x^2+y^2\le z}^{} e^{-\frac{x^2+y^2}{2} dxdy} =1-e^{\frac{z}{2} } FZ(z)=P(Zz)=P(X2+Y2z)=x2+y2ze2x2+y2dxdy=1e2z
所以Z的分布函数为
F Z ( z ) = { 1 − e − z 2 , z > 0 0 , z ≤ 0 F_{Z} \left ( z \right ) =\begin{cases} & 1-e^{-\frac{z}{2} }, { } z>0 \\ & 0,{ } z\le 0 \end{cases} FZ(z)={1e2z,z>00,z0
例用matlab绘制图像为
Z的分布函数
程序代码为
fplot(@(z)1-exp(-z/2),[0,10]);
由Z的分布函数得Z的概率密度函数为
f Z ( z ) = { 1 2 e − z 2 , z > 0 0 , z ≤ 0 f_{Z} \left ( z \right ) =\begin{cases} & \frac{1}{2}e^{-\frac{z}{2} }, { } z>0 \\ & 0,{ } z\le 0 \end{cases} fZ(z)={21e2z,z>00,z0
例用Matlab绘制图像为
Z的概率密度函数
程序代码为 fplot(@(z)exp(-z/2)/2,[0,10]);
此时,Z的随机变量函数服从的分布是自由度为2的 χ 2 \chi ^{2} χ2分布

  • 2
    点赞
  • 2
    评论
  • 11
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论2
请先登录 后发表评论~
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏作者

weixin_44202064

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值