利用MATLAB来绘制二维随机变量的联合概率密度图像

本文档介绍了如何使用MATLAB绘制二维随机变量的联合概率密度函数,包括两种不同分布类型的随机变量:X服从标准正态,Y服从均匀分布;以及X和Y均服从正态分布但不独立的情况。详细解析了联合概率密度函数的计算,并展示了MATLAB代码实现。同时,讨论了随机变量函数的概率密度和数学期望、方差的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文档通过MATLAB来绘制二维随机变量(X,Y)的联合概率密度函数。
第一种类型,X服从标准正态分布,Y服从均匀分布。
【例题】已知随机变量X与Y相互独立,X~N(0,1);Y在区间[0,2]上服从均匀分布。求:
(1)二维随机变量(X,Y)的联合概率密度。
(2)概率P(X ≥ \geq Y)
解答:
(1)随机变量X的概率密度为
f X ( x ) = 1 2 π e − x 2 2 − ∞ < x < ∞ f_{X} (x)=\frac{1}{\sqrt{2\pi} } e^{-\frac{x^2}{2} } -\infty <x<\infty fX(x)=2π 1e2x2<x<
随机变量Y的概率密度为
f Y ( y ) = { 1 2 , y = ( 0 , 2 ) 0 , y = 其它 f_{Y} (y)=\begin{cases} & \frac{1}{2}, y= (0,2)\\ & 0 , y=其它 \end{cases} fY(y)={ 21,y=(0,2)0,y=其它
因为X与Y相互独立,所以二维随机变量(X,Y)的联合概率密度为:
f ( x , y ) = { 1 2 2 π e − x 2 2 , x = − ∞ < x < ∞ , 0 ≤ y ≤ 2 0 , 其它 f(x,y)=\begin{cases} & \frac{1}{2\sqrt{2\pi } }e^{-\frac{x^2}{2} }, x=-\infty <x<\infty ,0\le y\le 2 \\ & 0, 其它 \end{cases} f(x,y)={ 22π 1e2x2,x=<x<,0y20,其它
此二维随机变量的联合概率密度函数用MATLAB来绘制,其代码如下
x=-10:0.1:10;
y=0:0.1:1;
z=ones(length(y),1) ∗ \ast (exp(-x.^2)/2)/(2 ∗ \ast sqrt(2*pi));
mesh(x,y,z)
输出图像为
在这里插入图片描述
(2)概率P(X ≥ \geq Y)就是随机点(X,Y)落在平面区域X ≥ \geq Y内的概率。
在这里插入图片描述

第二种类型:X与Y均服从正态分布,且不独立。
【例题】设二维随机变量(X,Y)的联合概率密度函数为
f ( x , y ) = 5 96 π e − 25 32 [ ( x − 1 ) 2 9 + ( x − 1 ) ( y − 2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值