本文档通过MATLAB来绘制二维随机变量(X,Y)的联合概率密度函数。
第一种类型,X服从标准正态分布,Y服从均匀分布。
【例题】已知随机变量X与Y相互独立,X~N(0,1);Y在区间[0,2]上服从均匀分布。求:
(1)二维随机变量(X,Y)的联合概率密度。
(2)概率P(X ≥ \geq ≥Y)
解答:
(1)随机变量X的概率密度为
f X ( x ) = 1 2 π e − x 2 2 − ∞ < x < ∞ f_{X} (x)=\frac{1}{\sqrt{2\pi} } e^{-\frac{x^2}{2} } -\infty <x<\infty fX(x)=2π1e−2x2−∞<x<∞
随机变量Y的概率密度为
f Y ( y ) = { 1 2 , y = ( 0 , 2 ) 0 , y = 其它 f_{Y} (y)=\begin{cases} & \frac{1}{2}, y= (0,2)\\ & 0 , y=其它 \end{cases} fY(y)={
21,y=(0,2)0,y=其它
因为X与Y相互独立,所以二维随机变量(X,Y)的联合概率密度为:
f ( x , y ) = { 1 2 2 π e − x 2 2 , x = − ∞ < x < ∞ , 0 ≤ y ≤ 2 0 , 其它 f(x,y)=\begin{cases} & \frac{1}{2\sqrt{2\pi } }e^{-\frac{x^2}{2} }, x=-\infty <x<\infty ,0\le y\le 2 \\ & 0, 其它 \end{cases} f(x,y)={
22π1e−2x2,x=−∞<x<∞,0≤y≤20,其它
此二维随机变量的联合概率密度函数用MATLAB来绘制,其代码如下
x=-10:0.1:10;
y=0:0.1:1;
z=ones(length(y),1) ∗ \ast ∗ (exp(-x.^2)/2)/(2 ∗ \ast ∗sqrt(2*pi));
mesh(x,y,z)
输出图像为
(2)概率P(X ≥ \geq ≥Y)就是随机点(X,Y)落在平面区域X ≥ \geq ≥Y内的概率。
第二种类型:X与Y均服从正态分布,且不独立。
【例题】设二维随机变量(X,Y)的联合概率密度函数为
f ( x , y ) = 5 96 π e − 25 32 [ ( x − 1 ) 2 9 + ( x − 1 ) ( y − 2