UA MATH566 统计理论1 充分统计量例题答案3

该文通过三个例题详细介绍了统计理论中完备统计量的概念及验证方法,涉及正态分布、指数分布族和伽马分布。通过Fisher-Neyman定理、Laplace变换等工具,阐述了如何判断统计量的充分性和完备性。
摘要由CSDN通过智能技术生成

UA MATH566 统计理论1 充分统计量例题答案3

例1.18 X 1 , ⋯   , X n ∼ i i d N ( μ , σ 2 ) X_1,\cdots,X_n \sim_{iid} N(\mu,\sigma^2) X1,,XniidN(μ,σ2),验证 T ( X ) = ( X ˉ , S S T ) T(X)=(\bar{X},SST) T(X)=(Xˉ,SST)是完备统计量。
先写出样本的联合概率密度,
f ( x 1 , ⋯   , x n ) = ∏ i = 1 n { 1 2 π σ exp ⁡ ( − ( X i − μ ) 2 2 σ 2 ) } = ( 2 π ) − n / 2 σ − n exp ⁡ ( − 1 2 σ 2 ∑ i = 1 n ( X i − μ ) 2 ) f(x_1,\cdots,x_n) = \prod_{i=1}^n \{\frac{1}{\sqrt{2\pi \sigma} } \exp \left( - \frac{(X_i-\mu)^2}{2\sigma^2} \right)\} \\ = (2\pi)^{-n/2}\sigma^{-n}\exp\left( -\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i-\mu)^2\right) f(x1,,xn)=i=1n{ 2πσ 1exp(2σ2(Xiμ)2)}=(2π)n/2σnexp(2σ21i=1n(Xiμ)2)
我们把指数中的完全平方拆分一下,
∑ i = 1 n ( X i − μ ) 2 = ∑ i = 1 n ( X i − X ˉ + X ˉ − μ ) 2 = ∑ i = 1 n ( X i − X ˉ ) 2 + n ( X ˉ − μ ) 2 = S S T + n ( X ˉ − μ ) 2 \sum_{i=1}^n (X_i-\mu)^2 = \sum_{i=1}^n(X_i-\bar{X}+\bar{X}-\mu)^2 \\= \sum_{i=1}^n(X_i-\bar{X})^2 + n(\bar{X}-\mu)^2 = SST +n(\bar{X}-\mu)^2 i=1n(Xiμ)2=i=1n(XiXˉ+Xˉμ<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值