估计理论(4):例5.8说明如何用完备的充分统计量找到MVU估计

本文通过例5.8解释了如何利用完备的充分统计量找到均匀噪声均值的MVU(最小方差无偏估计)。由于均匀分布的正则条件不满足,不能直接应用CRLB(Cramér-Rao下界),所以通过找到完备充分统计量T=max(x[n]),并计算其均值和方差,得出MVU估计为θ^=2NN+1max(x[n]),并比较了它与样本均值的方差,证明在N≥2时,该MVU估计的方差更小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节内容摘自Steven M. Kay,《Fundamentals of Statistical Signal Processing: Estimation Theory》。
  我们来个例子,如何用完备统计量找到MVU估计。
【例5.8】均匀噪声的均值

  • 问题描述
      我们有数据
    x [ n ] = w [ n ] , n = 0 , 1 , … , N − 1 (1) \tag{1} x[n]=w[n],\quad n=0,1,\ldots,N-1 x[n]=w[n],n=0,1,,N1(1)这里 w [ n ] ∼ U ( 0 , β ) w[n]\sim {\mathcal U}(0,\beta) w[n]U(0,β) β > 0 \beta>0 β>0。我们希望能够得到均值 θ = β / 2 \theta=\beta/2 θ=β/2的MVU估计。
  • CRLB为何不适用?
    从【定理3.1】我们知道,要使用CRLB,需要概率密度函数满足正则条件
    E [ ∂ ln ⁡ p ( x ; θ ) ∂ θ ] = 0. (2) \tag{2} {\rm E}\left[\frac{\partial \ln p({\bf x};\theta)}{\partial \theta}\right]=0. E[θlnp(x;θ)]=0.(2)现在我们来证明,对于均匀分布噪声均值来说,正则条件(2)不满足。

下面我们来看看习题3.1。

顺便说一句,这本书的答案可见(https://download.csdn.net/download/qianlongchen/9433628?utm_source=iteye)。虽然是手写不太清楚,而且VIP才能下载,不过还是很解决问题啦。

【Problem 3.1】如果 x [ n ] ∼ U ( 0 , θ ) x[n]\sim {\mathcal U}(0,\theta) x[n]U(0,θ) n = 0 , 1 , … , N − 1 n=0,1,\ldots,N-1 n=0,1,,N1。试说明正则条件
E [ ∂ ln ⁡ p ( x ; θ ) ∂ θ ] = 0 {\rm E}\left[\frac{\partial \ln p({\bf x};\theta)}{\partial \theta}\right]=0 E[θlnp(x;θ)]=0不成立,因而CRLB不适用。
【解答】
p ( x [ n ] ; θ ) = 1 θ ( u ( x [ n ] ) − u ( x [ n ] − θ ) ) p(x[n];\theta)=\frac{1}{\theta}\left(u(x[n])-u(x[n]-\theta) \right) p(x[n];θ)=θ1(u(x[n])u(x[n]θ))这里的 u ( x ) u(x) u(x)为阶跃函数。因此,我们可以得到
p ( x ; θ ) = ∏ n = 0 N − 1 p ( x [ n ] ; θ ) , p({\bf x};\theta)=\prod_{n=0}^{N-1}p(x[n];\theta), p(x;θ)=n=0N1p(x[n];θ),显然,如果我们能够证明
E [ ∂ ln ⁡ p ( x ; θ ) ∂ θ ] ≠ 0 ,   f o r   n = 0 , … , N − 1 {\rm E}\left[\frac{\partial \ln p({\bf x};\theta)}{\partial \theta}\right]\ne 0,{\rm \ for \ }n=0,\ldots,N-1 E[θlnp(x;θ)]=0, for n=0,,N1则获证。我们令 y = x [ n ] y=x[n] y=x[n],有
p ( y ; θ ) = 1 θ ( u ( y ) − u ( y − θ ) ) , p(y;\theta)=\frac{1}{\theta}\left(u(y)-u(y-\theta) \right), p(y;θ)=θ1(u(y)u(yθ)),则可以得到 p ( y ; θ p(y;\theta p(y;θ的图像如下图所示。看图的时候,可以考虑 y y y是固定值。显然应该有 y = x [ n ] > 0 y=x[n]>0 y=x[n]>0。这时,如果 θ < y \theta<y θ<y,函数值为0; θ > y \theta>y θ>y,则有函数值为 1 / θ 1/\theta 1/θ。因此,有
E [ ∂ ln ⁡ p ( y ; θ ) ∂ θ ] = E [ ∂ ln ⁡ ( 1 / θ ) ∂ θ ] = − 1 θ ≠ 0. {\rm E}\left[\frac{\partial \ln p({y};\theta)}{\partial \theta}\right]={\rm E}\left[\frac{\partial \ln (1/\theta)}{\partial \theta}\right]=-\frac{1}{\theta}\ne 0. E[θlnp(y;θ)]=E[θln(1/θ)]=θ1=0.

在这里插入图片描述

  • 下面我们来找到一个无偏估计,并且用充分统计量的完备性,来考察这个无偏估计是不是MVU估计。
      我们很自然会想到用样本均值
    θ ^ = 1 N ∑ n = 0 N − 1 x [ n ] \hat \theta=\frac{1}{N}\sum_{n=0}^{N-1}x[n] θ^=N1n=0N1x[n]作为估计。这里 x [ n ] ∼ U ( 0 , 2 θ ) x[n]\sim {\mathcal U}(0,2\theta) x[n]U(0,2θ),因此 E ( x [ n ] ) = θ {\rm E}(x[n])=\theta E(x[n])=θ。对估计求均值,得到
    E ( θ ^ ) = θ . {\rm E}(\hat \theta)=\theta. E(θ^)=θ.因此 θ ^ \hat \theta θ^为无偏估计,其方差为
    v a r ( θ ^ ) = 1 N v a r ( x [ n ] ) = β 2 12 N = θ 2 3 N . (5.9) \tag{5.9} {\rm var}(\hat \theta)=\frac{1}{N}{\rm var}(x[n])=\frac{\beta^2}{12N}=\frac{\theta^2}{3N}. var(θ^)=N1var(x[n])=12Nβ2=3Nθ2.(5.9)

(1) 找到完备的充分统计量

我们可以用阶跃函数来表示均匀分布的PDF,即
p ( x [ n ] ; θ ) = 1 β [ u ( x [ n ] ) − u ( x [ n ] − β ) ] , p(x[n];\theta)=\frac{1}{\beta}[u(x[n])-u(x[n]-\beta)], p(x[n];θ)=β1[u(x[n])u(x[n]β)]则可以得到对所有数据的PDF为
p ( x ; θ ) = 1 β N ∏ n = 0 N − 1 [ u ( x [ n ] ) − u ( x [ n ] − β ) ] . p({\bf x};\theta)=\frac{1}{\beta^N}\prod_{n=0}^{N-1}[u(x[n])-u(x[n]-\beta)]. p(x;θ)=βN1n=0N1[u(x[n])u(x[n]β)].与Problem 3.1类似,我们可以得到
p ( x ; θ ) = { 1 β N 0 ≤ x [ n ] ≤ β , n = 0 , 1 , … , N − 1 0 o t h e r w i s e p({\bf x};\theta)=\left\{\begin{matrix} \frac{1}{\beta^N} & 0\le x[n]\le \beta,n=0,1,\ldots,N-1 \\0& {\rm otherwise}\end{matrix}\right. p(x;θ)={βN100x[n]β,n=0,1,,N1otherwise进一步,可以得到 p ( x ; θ ) = { 1 β N max ⁡ x [ n ] < β , min ⁡ x [ n ] > 0 0 o t h e r w i s e p({\bf x};\theta)=\left\{\begin{matrix} \frac{1}{\beta^N} & \max{x[n]}<\beta,\min x[n]>0 \\0& {\rm otherwise}\end{matrix}\right. p(x;θ)={βN10maxx[n]<β,minx[n]>0otherwise因此
p ( x ; θ ) = 1 β N u ( β − max ⁡ x [ n ] ) u ( min ⁡ x [ n ] ) = g ( T ( x ) , θ ) h ( x ) , p({\bf x};\theta)=\frac{1}{\beta^N}u(\beta-\max x[n])u(\min x[n])=g(T({\bf x}),\theta)h({\bf x}), p(x;θ)=βN1u(βmaxx[n])u(minx[n])=g(T(x),θ)h(x),其中
g ( T ( x ) , θ ) = 1 β N u ( β − max ⁡ x [ n ] ) , h ( x ) = u ( min ⁡ x [ n ] ) . g(T({\bf x}),\theta)=\frac{1}{\beta^N}u(\beta-\max x[n]),h({\bf x})=u(\min x[n]). g(T(x),θ)=βN1u(βmaxx[n])h(x)=u(minx[n]).
通过Neyman-Fisher因式分解定理, T ( x ) = max ⁡ x [ n ] T({\bf x})=\max x[n] T(x)=maxx[n]为充分统计量,并且可以证明其为完备的(证明略)。

(2) 找到 T ( x ) T({\bf x}) T(x)的函数,得到无偏估计
  上面我们找到完备的充分统计量为 T ( x ) = max ⁡ x [ n ] T({\bf x})=\max x[n] T(x)=maxx[n]。我们首先来确定它的均值。显然, T T T为顺序统计量(order statistics)。我们先来看累积分布函数
P r { T ≤ ξ } = Pr ⁡ { x [ 0 ] ≤ ξ , x [ 1 ] ≤ ξ , … , x [ N − 1 ] ≤ ξ } = ∏ n = 0 N − 1 Pr ⁡ { x [ n ] ≤ ξ } = Pr ⁡ { x [ n ] ≤ ξ } N . \begin{aligned} {\rm Pr}\{T\le \xi\}&=\Pr\{x[0]\le \xi,x[1]\le\xi, \ldots,x[N-1]\le \xi\}\\ &=\prod_{n=0}^{N-1}\Pr\{x[n]\le \xi\}\\ &=\Pr\{x[n]\le \xi\}^N. \end{aligned} Pr{Tξ}=Pr{x[0]ξ,x[1]ξ,,x[N1]ξ}=n=0N1Pr{x[n]ξ}=Pr{x[n]ξ}N.因此得到PDF为
p T ( ξ ) = d P r { T ≤ ξ } d ξ = N Pr ⁡ { x [ n ] ≤ ξ } N − 1 d P r { x [ n ] ≤ ξ } d ξ . \begin{aligned} p_{T}(\xi)&=\frac{d{\rm Pr}\{T\le \xi\}}{d\xi}\\ &=N\Pr\{x[n]\le \xi\}^{N-1}\frac{d{\rm Pr}\{x[n]\le \xi\}}{d\xi}. \end{aligned} pT(ξ)=dξdPr{Tξ}=NPr{x[n]ξ}N1dξdPr{x[n]ξ}.注意到 d P r { x [ n ] ≤ ξ } d ξ \frac{d{\rm Pr}\{x[n]\le \xi\}}{d\xi} dξdPr{x[n]ξ} x [ n ] x[n] x[n]的概率密度函数 p x [ n ] ( ξ ; θ ) p_{x[n]}(\xi; \theta) px[n](ξ;θ),且
p x [ n ] ( ξ ; θ ) = { 1 β 0 < ξ < β 0 o t h e r w i s e . p_{x[n]}(\xi; \theta)=\left\{\begin{matrix}\frac{1}{\beta}&0<\xi<\beta\\0&{\rm otherwise}.\end{matrix} \right. px[n](ξ;θ)={β100<ξ<βotherwise.积分后得到
Pr ⁡ { x [ n ] ≤ ξ } = { 0 ξ < 0 ξ β 0 < ξ < β 1 ξ > β . \Pr\{x[n]\le\xi\}=\left\{\begin{matrix}0&\xi<0\\\frac{\xi}{\beta}&0<\xi<\beta\\1&{\xi>\beta}.\end{matrix} \right. Pr{x[n]ξ}=0βξ1ξ<00<ξ<βξ>β.最后,我们得到
p T ( ξ ) = { 0 ξ < 0 N ( ξ β ) N − 1 1 β 0 < ξ < β 0 ξ > β . p_T(\xi)=\left\{\begin{matrix}0&\xi<0\\ N\left(\frac{\xi}{\beta}\right)^{N-1}\frac{1}{\beta} & 0<\xi<\beta\\ 0&{\xi>\beta}.\end{matrix} \right. pT(ξ)=0N(βξ)N1β10ξ<00<ξ<βξ>β.因此,可以求得
E ( T ) = ∫ − ∞ ∞ ξ p T ( ξ ) d ξ = ∫ 0 β ξ N ( ξ β ) N − 1 1 β d ξ = N N + 1 β = 2 N N + 1 θ \begin{aligned} {\rm E}(T)&=\int_{-\infty}^{\infty}\xi p_T({\xi})d\xi\\ &=\int_{0}^{\beta}\xi N\left(\frac{\xi}{\beta}\right)^{N-1}\frac{1}{\beta}d\xi\\ &=\frac{N}{N+1}\beta\\ &=\frac{2N}{N+1}\theta \end{aligned} E(T)=ξpT(ξ)dξ=0βξN(βξ)N1β1dξ=N+1Nβ=N+12Nθ为了得到无偏估计,我们令 θ ^ = N + 1 2 N T \hat \theta=\frac{N+1}{2N}T θ^=2NN+1T,因此最终无偏估计为
θ ^ = N + 1 2 N max ⁡ x [ n ] . \hat \theta=\frac{N+1}{2N}\max x[n]. θ^=2NN+1maxx[n].
有点出人意料的是,样本均值不是均匀分布噪声的MVU估计!
下面我们来看看二者方差情况。
(3)最小估计方差
  我们可以得到最小估计方差为
v a r ( θ ^ ) = ( N + 1 2 N ) v a r ( T ) , {\rm var}(\hat \theta)=\left(\frac{N+1}{2N}\right){\rm var}(T), var(θ^)=(2NN+1)var(T),其中
v a r ( T ) = ∫ 0 β ξ 2 N ξ N − 1 β N d ξ − ( N β N + 1 ) 2 = N β 2 ( N + 1 ) 2 ( N + 2 ) . \begin{aligned} {\rm var}(T)&=\int_{0}^{\beta}\xi^2 \frac{N\xi^{N-1}}{\beta^N}d\xi-\left(\frac{N\beta}{N+1}\right)^2\\ &=\frac{N\beta^2}{(N+1)^2(N+2)}. \end{aligned} var(T)=0βξ2βNNξN1dξ(N+1Nβ)2=(N+1)2(N+2)Nβ2.最终,我们可以得到最小方差为
v a r ( θ ^ ) = β 2 4 N ( N + 2 ) . (5.10) \tag{5.10} {\rm var}(\hat \theta)=\frac{\beta^2}{4N(N+2)}. var(θ^)=4N(N+2)β2.(5.10)我们把样本均值的方差(5.9)重写如下
v a r ( θ ^ ) = 1 N v a r ( x [ n ] ) = β 2 12 N (5.9) \tag{5.9} {\rm var}(\hat \theta)=\frac{1}{N}{\rm var}(x[n])=\frac{\beta^2}{12N} var(θ^)=N1var(x[n])=12Nβ2(5.9)显然如果 N ≥ 2 N\ge 2 N2,则(5.10)更小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值