UA MATH566 统计理论 证明UMVUE的方法
关于UMVUE,我们有下面两个非常常用的结论:
Lehmann-Sheffe定理:
- 如果 g ( θ ^ ) g(\hat{\theta}) g(θ^)是 g ( θ ) g(\theta) g(θ)的无偏估计,也是充分完备统计量 T ( X ) T(X) T(X)的函数,则 g ( θ ^ ) g(\hat{\theta}) g(θ^)是 g ( θ ) g(\theta) g(θ)的UMVUE;
- 如果 g ( θ ^ ) g(\hat{\theta}) g(θ^)是 g ( θ ) g(\theta) g(θ)的无偏估计,则 E [ g ( θ ^ ) ∣ T ] E[g(\hat{\theta})|T] E[g(θ^)∣T]是 g ( θ ) g(\theta) g(θ)的UMVUE;
- 如果存在 g ( θ ) g(\theta) g(θ)的UMVUE,则一定是充分完备统计量 T ( X ) T(X) T(X)的函数。
Cramer-Rao不等式:
f ( x , θ ) f(x,\theta) f(x,θ)是Cramer-Rao分布族, g ^ ( X ) \hat{g}(X) g^(X)与 θ ^ ( X ) \hat{\theta}(X) θ^(X)分别是 g ( θ ) g(\theta) g(θ)与 θ \theta θ的无偏估计,其中 g ( θ ) g(\theta) g(θ)可导,则
V a r ( θ ^ ) ≥ I − 1 ( θ ) , V a r ( g ^ ( X ) ) ≥ [ g ′ ( θ ) ] 2 I − 1 ( θ ) Var(\hat{\theta})\ge I^{-1}(\theta),\ \ Var(\hat{g}(X)) \ge [g'(\theta)]^2I^{-1}(\theta) Var(θ^)≥I−1(θ), Var(g^(X))≥[g′(θ)]2I−1(θ)
Cramer-Rao分布族(正则分布族) { f ( x , θ ) , θ ∈ Θ } \{f(x,\theta),\theta \in \Theta\} {
f(x,θ),θ∈Θ}
为了让C-R不等式成立,需要一些条件,满足这些条件的分布族被称为C-R分布族:
- θ ∈ Θ \theta \in \Theta θ∈Θ, Θ \Theta Θ是开集,并且 f ( x , θ ) = f ( x , θ ′ ) ⇔ θ = θ ′ f(x,\theta)=f(x,\theta^{'}) \Leftrightarrow \theta = \theta^{'} f(x,θ)=f(x,θ′)⇔θ=θ′
- 记分布族的对数似然为 L ( θ ) = ln f ( x , θ ) L(\theta)=\ln f(x,\theta) L(θ)=lnf(x,θ),假设对数似然二阶可导
- 记得分函数 S ( x , θ ) = ∇ L ( θ ) S(x,\theta)=\nabla L(\theta) S(x,θ)=∇L(θ),并假设 S ( x , θ ) ∈ L 2 ( X , B ( X ) , P X ) S(x,\theta) \in L^2(\mathcal{X},\mathcal{B}(\mathcal{X}),P_X) S(x,θ)∈L2(X,B(X),PX)
- 假设分布族 F θ F_{\theta} Fθ的支撑 S u p p θ = { x : f ( x , θ ) } > 0 Supp_{\theta}=\{x:f(x,\theta)\}>0 Suppθ={ x:f(x,θ)}>0与 θ \theta θ无关
- 假设 f ( x , θ ) f(x,\theta) f(x,θ)关于 θ \theta θ可导
常见的非正则分布族的分布有均匀分布、带位移的指数分布等。如果某个统计量的方差等于C-R下界,那么他一定具有最小方差。
基于这两个定理,我们有这些证明UMVUE的方法:(还有方法三C-R不等式法,我把这个方法并入矩估计量+delta方法)
方法一 零无偏估计法
如果 g ( θ ^ ) g(\hat{\theta}) g(θ^)是 g ( θ ) g(\theta) g(θ)的有界无偏估计(方差有界),并且对任意零的无偏估计 l ( X ) l(X) l(X)(即 E l ( X ) = 0 El(X)=0 El(X)=0)都满足 C o v ( g ( θ ^ ) , l ( X ) ) = 0 Cov(g(\hat{\theta}),l(X))=0 Cov(g(θ^),l(X))=0,则 g ( θ ^ ) g(\hat{\theta}) g(θ^)是 g ( θ ) g(\theta) g(θ)的UMVUE。
证明 假设 g 1 ( θ ^ ) g_1(\hat{\theta}) g1(θ^)是 g ( θ ) g(\theta) g(θ)的另一个无偏估计,作 l ( X ) = g 1 − g l(X) = g_1 - g l(X)=g1−g,则
V a r ( g 1 ) = V a r ( g + l ) = V a r ( g ) + V a r ( l ) + 0 ≥ V a r ( g ) Var(g_1) = Var(g + l) = Var(g) + Var(l) + 0 \ge Var(g) Var(g1)=Var(g+l)=Var(g)+Var(l)+0≥Var(g)
上式对任意无偏估计均成立。
证毕
这个方法一般只用来证明某个统计量是UMVUE,并且使用的时候有一个难点,零的无偏估计是任意的。因此使用这个方法的本质是尝试用条件:
E l ( X ) = ∫ X l ( x ) f X ( x ) d x = 0 El(X) = \int_{\mathcal{X}} l(x)f_X(x)dx = 0 El(X)=∫Xl(x)fX(x)dx=0
导出
C o v ( g ( θ ^ ) , l ( X ) ) = E [ g ( θ ^ ) l ( X ) ] = ∫ X ( g ( θ ^ ) l ) ( x ) f X ( x ) d x Cov(g(\hat{\theta}),l(X)) = E[g(\hat{\theta})l(X)] = \int_{\mathcal{X}} (g(\hat{\theta})l)(x)f_X(x)dx Cov(g(θ^),l(X))=E[g(θ^)l(X)]=∫X(g(θ^)l)(x)fX(x)dx
例1 { X i } i = 1 n \{X_i\}_{i=1}^n {
Xi}i=1n是总体 B e r ( p ) Ber(p) Ber(p)的一组简单随机样本,求 p p p的UMVUE
样本的联合似然为
L ( p ) = ∏ i = 1 n p X i ( 1 − p ) 1 − X i = p ∑ i = 1 n X i ( 1 − p ) n − ∑ i = 1 n X i L(p) = \prod_{i=1}^n p^{X_i}(1-p)^{1-X_i} = p^{\sum_{i=1}^n X_i}(1-p)^{n-\sum_{i=1}^n X_i} L(p)=i=1∏npXi(1−p)1−Xi=p∑i=1nXi(1−p)n−∑i=1nXi
根据Neyman-Fisher定理, T ( X ) = ∑ i = 1 n X i T(X) = \sum_{i=1}^n X_i T(X)=∑i=1nXi是充分统计量。计算 T ( X ) T(X) T(X)的期望,
E T ( X ) = E ∑ i = 1 n X = ∑ i = 1 n E X i = n p ET(X) = E\sum_{i=1}^n X = \sum_{i=1}^n EX_i = np ET(X)=Ei=1∑nX=i=1∑nEXi=np
因此 T ( X ) / n T(X)/n T(X)/n是 p p p的无偏估计。下面用零无偏估计法证明它也是UMVUE。对于任一零无偏估计 l ( T ) l(T) l(T),
E l ( T ) = ∑ i = 0 n l i C n i p i ( 1 − p ) n − i = 0 ⇒ ∑ i = 0 n l i C n i ( p 1 − p ) i = 0 El(T) = \sum_{i=0}^n l_iC_n^i p^i(1-p)^{n-i} = 0 \Rightarrow \sum_{i=0}^n l_iC_n^i \left(\frac{p}{1-p} \right)^i = 0