0. 无偏估计简介
估计是用样本统计量(可以理解为随机抽样)来估计总体参数时的一种无偏推断。
无偏估计的要求就是:估计出来的参数的数学期望等于被估计参数的真实值。(如:
是总体参数
的估计量,而
是被估计参数)(无偏性是一种评价估计量优良性的准则)
无偏估计的意义:在多次重复下,估计量的平均值 ≈ 被估计参数真值
所以呢,可以看出:估计值也是一个变量,因为是随机的嘛。 真实值谁也不知道啊(因为你不可能把列出无限的实验结果来,除了可能通过数学计算得到的常见的分布)。
1. 无偏估计的用途
问题引入:
现实中想要知道全体女性的身高均值, 但是无法对所有女性测量身高,只有通过抽样一些女性,然后来估计全体女性身高的均值
2. 无偏估计的计算公式推导
给定一组服从一定分布的随机变量,它真实的均值和方差分别用和
表示,即
以女性的身高为例:
假设我们采样到的n个女性身高数据为
则样本统计的均值为
方差为
此时是总体参数
的无偏估计。
样本均值是否是无偏估计?
即判断是否成立
推导:
所以,是
样本方差是否是无偏估计?
即判断是否成立
推导:(为什么样本方差的分母是n-1?)
所以不是
的无偏估计。
,也就是低估了
所以,可以通过对做个调整,让它变为
的无偏估计,即
所以的无偏估计为:
3. 无偏估计的直观理解
以打靶为例:
左图都是无偏的,因为都在靶心周围,那么期望就是靶心
4. 判断估计量好坏的三种标准
判断一个估计量“好坏”,至少可以从以下三个方面来考虑:
-
无偏
-
有效
-
一致
有效性
有效性越高就说明,估计量的方差更小,估计量更靠近目标值
就像上两张图所示,可能满足无偏性,但是右边的更符合有效性
一致性
实际操作中,要找到满足三个方面的量有时候并不容易,可以根据情况进行取舍。