UA MATH567 高维统计I 概率不等式5 推广Hoeffding不等式与Khintchine不等式

本文深入探讨了如何将Hoeffding不等式推广到亚高斯随机变量的情况,证明了独立亚高斯随机变量之和的亚高斯范数不等式。同时介绍了Khintchine不等式在p>=2时的性质,并给出了p=1时的相关结果。这些理论在概率论和机器学习中具有重要应用。
摘要由CSDN通过智能技术生成

UA MATH567 高维统计I 概率不等式5 推广Hoeffding不等式

我们在第一讲时讨论了Hoeffding不等式,但那个版本时针对有界的随机变量的,我们希望通过亚高斯性推广Hoeffding不等式。

结论 独立亚高斯分布的和的亚高斯范数:假设 { X i } i = 1 N \{X_i\}_{i=1}^N { Xi}i=1N是一列零均值独立亚高斯随机变量,则 ∑ i = 1 N X i \sum_{i=1}^N X_i i=1NXi也是亚高斯随机变量,并且存在与 N N N无关的常数 C C C使得
∥ ∑ i = 1 N X i ∥ ψ 2 2 ≤ C ∑ i = 1 N ∥ X i ∥ ψ 2 2 \left\| \sum_{i=1}^N X_i \right\|_{\psi_2}^2\le C \sum_{i=1}^N \left\| X_i \right\|_{\psi_2}^2 i=1NXiψ22Ci=1NXiψ22

证明 要说明一个随机变量是亚高斯的,只需要验证它满足亚高斯性即可,计算
E e λ ∑ i = 1 N X i = ∏ i = 1 N E e λ X i Ee^{\lambda \sum_{i=1}^NX_i}=\prod_{i=1}^N Ee^{\lambda X_i} Eeλi=1NXi=i=1NEeλXi

因为 X i X_i Xi是亚高斯的,于是
E e λ X i ≤ e ( c 1 ∥ X i ∥ ψ 2 ) 2 λ 2 Ee^{\lambda X_i} \le e^{(c_1\left\| X_i \right\|_{\psi_2})^2\lambda^2} EeλXie(c1Xiψ2)2λ2

其中 K 5 = c 1 K 4 = c 1 ∥ X i ∥ ψ 2 K_5=c_1K_4 = c_1\left\| X_i \right\|_{\psi_2} K5=c1K4=c1Xiψ2,因此
E e λ ∑ i = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值