UA MATH567 高维统计II 随机向量2 各向同性的随机向量

本文深入探讨了各向同性随机向量的概念,介绍了如何从一元随机变量的方差推广到多元随机向量的各向同性,并详细阐述了各向同性随机向量的性质,包括期望值和范数的关系。此外,还讨论了当维度增加时,独立的各向同性随机向量趋于正交的现象。
摘要由CSDN通过智能技术生成

UA MATH567 高维统计II 随机向量2 各向同性的随机向量

上一讲讨论随机向量L2范数的concentration的时候假设随机向量每个分量的方差为1,这其实是一种常用的假设,这一讲我们的目标就是讨论这种假设,可以把它理解为一元随机变量方差为1的假设的推广。

各向同性 (Isotropy) 称一个随机向量是各向同性的如果它的协方差矩阵为单位矩阵。对于均值为 μ \mu μ,协方差为 Σ \Sigma Σ的随机向量 X X X,我们可以定义 Z = Σ − 1 / 2 ( X − μ ) Z =\Sigma^{-1/2}(X-\mu) Z=Σ1/2(Xμ),显然 Z Z Z就是一个零均值各向同性的随机向量。

各向同性的充要条件 n n n维随机向量 X X X各向同性等价于 ∀ x ∈ R n \forall x \in \mathbb{R}^n xRn,
E ⟨ X , x ⟩ 2 = ∥ x ∥ 2 2 E \langle X,x \rangle^2 = \left\| x\right\|_2^2 EX,x2=x22

其中 ⟨ X , x ⟩ \langle X,x \rangle X,x表示欧氏内积。

说明
E ⟨ X , x ⟩ 2 = E [ x T X X T x ] = x T E [ X X T ] x = ∥ x ∥ 2 2 = x T x ⇔ E [ X X T ] = Σ = I n E \langle X,x \rangle^2 = E[x^TXX^Tx]=x^TE[XX^T]x=\left\| x\right\|_2^2=x^Tx \\ \Leftrightarrow E[XX^T] = \Sigma = I_n EX,x2=E[xTXXTx]=xTE[XXT]x=x22=xTxE[XXT]=Σ=In

各向同性的性质

  1. 如果 X X
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值